On the basis of statistical data of interfacial bonding test between steel bar and recycled concrete under freezing-thawing environment, we built a model of bonding degradation in line with the gemetric damage theory. By fitting the bond strength-slip curve using exponential function, we established a bond-slip damage constitutive relation between steel bar and recycled concrete in freezing-thawing environment. Moreover, we analyzed the interfacial bonding energy consumption by defining the bonding energy factor to quantify the changes of interfacial bonding performance under different freeze-thaw cycles. Results revealed that the bonding energy of specimen with zero recycled aggregate was close to that with 100% of recycled aggregate, both larger than those with 30% and 60% of recycled aggregate. Given the same replacement ratio of recycled aggregate, the bonding energy factor declined with the proceeding of freezing-thawing cycles, indicating evident reduction of energy consumption ability; at the same cycle, the bonding energy factor first increased while then dropped with the augment of recycled aggregate ratio; when the replacement ratio of recycled aggregate was 30%, the energy consumption ability reached the optimum. The research findings revealed the failure mechanism and influencing factors for the interface between steel bar and recycled concrete in freeze-thaw environment, helped improving the basic theoretical system of recycled concrete, and offered reference for the application of recycled concrete in practical engineering.
Key words
recycled concrete /
freezing-thawing environment /
constitutive relation /
degradation of bonding /
interface damage
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 肖建庄. 再生混凝土[M]. 北京:中国建筑工业出版社,2008:22-43.
[2] 徐佳宁. 再生骨料混凝土与玄武岩纤维筋的粘结性能试验研究[D]. 锦州:辽宁工业大学,2019.
[3] YANG H F, DENG Z H, LIN J. Experimental Study on Flexural Behaviour of Recycled Aggregate Concrete Beam[C] //International Symposium on Innovation and Sustain ability of Structures in Civil Engineering, South China University of Technology, China, 2009: 270-276.
[4] 胡 琼,陈伟伟,邹超英. 再生混凝土粘结性能试验研究[J].哈尔滨工业大学学报,2010,12(18):49-54.
[5] 李兆霞. 损伤力学及其应用[M]. 北京:科学出版社,2002:61-68.
[6] 王 博,白国良. 钢筋与再生混凝土黏结破坏过程的能量机制研究[J]. 混凝土,2011(2):32-35.
[7] 王 博,白国良,代慧娟,等. 再生混凝土与钢筋粘结滑移性能的试验研究及力学分析[J]. 工程力学,2013,12(10):54-64.
[8] 冀晓东. 冻融循环后混凝土力学性能及钢筋混凝土粘结性能的研究[D]. 大连:大连理工大学,2007.
[9] 赵 娟. 冻融环境下钢筋与混凝土之间粘结性能及其损伤模型研究[D].哈尔滨:哈尔滨工业大学,2006.
[10] 肖建庄. 再生混凝土[M]. 北京:中国建筑工业出版社,2008:43-50.
[11] 卢晓梅. 冻融后再生混凝土钢筋粘结性能试验研究[D]. 青岛:青岛理工大学,2014.
[12] 李新明. 冻融后钢筋与再生混凝土粘结性能试验研究[D]. 青岛:青岛理工大学,2015.
[13] 安新正,易 成,王小学,等. 冻融后钢筋再生混凝土粘结性能研究[J]. 实验力学,2013,48(2):227-234.
[14] 孟祥鑫. 冻融循环后钢筋与再生混凝土粘结性能试验研究[D]. 哈尔滨:哈尔滨工业大学,2015.
[15] 王 博,白国良. 钢筋与再生混凝土黏结破坏过程的能量机制研究[J]. 混凝土,2011,256(2):32-35.
[16] 王 博,白国良,代慧娟,等. 再生混凝土与钢筋粘结滑移性能的试验研究及力学分析[J]. 工程力学,2013,12(10):54-64.
[17] GARCIA-TAENGUA E, MARTí-VARGAS J R, SERNA P. Bond of Reinforcing Bars to Steel Fiber Reinforced Concrete[J]. Construction and Building Materials, 2016, 105: 275-284.
[18] DB11/T 803—2011,再生混凝土结构设计规程[S]. 北京:北京市城乡规划标准化办公室,2011.
[19] DG/TJ 08—2018—2007,再生混凝土应用技术规程[S]. 上海:上海市建设和交通委员会,2007.