In the aim of predicting the hydrogeological environment changes in mining area caused by in-situ pyrolysis process, we examined the variation rules of elastic modulus of oil shale by controlling the pyrolysis temperature and time. We established a quantitative model of the elastic modulus of oil shale during pyrolysis based on the pyrolysis reaction rate equation. We further compared the test values with calculation values, and results suggest that the calculated elastic modulus values from the quantitative model are in good agreement with the experimental data, with a relatively small error. The proposed quantitative model accurately estimates the elastic modulus of oil shale during pyrolysis, thus is of referential value for the simulation of porosity, permeability, and groundwater pollutant transport in oil shale in-situ pyrolysis mining area.
Key words
oil shale /
pyrolysis /
elastic modulus /
pyrolysis temperature /
quantitative model
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 刘 剑,梁卫国.页岩油气及煤层气开采技术与环境现状及存在问题[J].科学技术与工程,2017,17(30):121-134.
[2] 孙可明,赵阳升,杨 栋.非均质热弹塑性损伤模型及其在油页岩地下开发热破裂分析中的应用[J].岩石力学与工程学报,2008,27(1):42-52.
[3] ESEME E, KROOSS B M, LITTKE R. Evolution of Petrophysical Properties of Oil Shales during High-temperature Compaction Tests: Implications for Petroleum Expulsion[J]. Marine and Petroleum Geology, 2012, 31(1): 110-124.
[4] 姜 雪.油页岩原位开采对地下水环境的影响研究[D]. 长春:吉林大学,2014.
[5] 赵 静.高温及三维应力下油页岩细观特征及力学特性试验研究[D].太原:太原理工大学,2014.
[6] RAO K S, KUMAR A. Geological and Engineering Behavior of Oil Shales[C]//Proceedings of the International Conference on Engineering Geology in New Millennium. New Delhi, October 27-29, 2015: 279-285.
[7] KUMAR A, RAO K S. Engineering Behavior of Oil Shale at Elevated Temperature and Confining Pressure[C]//Proceedings of the 5th Young Indian Geotechnical Engineers Conference. Vadodara, India, March 14-15, 2015: 102-109.
[8] BAI F, SUN Y, LIU Y, et al. Evaluation of the Porous Structure of Huadian Oil Shale during Pyrolysis Using Multiple Approaches[J]. Fuel, 2017, 187(1): 1-8.
[9] GENG Y, LIANG W, LIU J, et al. Evolution of Pore and Fracture Structure of Oil Shale under High Temperature and High Pressure[J]. Energy & Fuels, 2017, 31(10):10404-10413.
[10] 刘洪鹏,张少冲,王 擎.油页岩半焦燃烧过程中官能团演化特性研究[J].科学技术与工程,2017,17(7): 35-41.
[11] 刘洪鹏,郭 超,巩时尚,等.龙口油页岩半焦燃烧破碎特性研究[J].科学技术与工程,2017,17(7): 168-172.
[12] 耿毅德.油页岩地下原位压裂-热解物理力学特性试验研究[D].太原:太原理工大学,2018.
[13] 郭树才,耿丽文.几种油页岩热重法热解动力学的研究[J].燃料化学学报,1986,14(3):211-217.
[14] 于忻邑.吉木萨尔油页岩热解及其灰渣利用[D]. 乌鲁木齐:新疆大学,2015.
[15] 郭晋宇,刘 剑,耿毅德.热解过程中油页岩孔隙率变化规律[J].科学技术与工程,2019,19(35):107-112.