Experimental Study on Strength of Alkali-treated Red Clay

ZHANG Yao-dan, CHEN Jun, SHI Peng-chao, CHEN Tai-xu, YANG Heng, YANG Yong-yu

Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (3) : 170-177.

PDF(4102 KB)
PDF(4102 KB)
Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (3) : 170-177. DOI: 10.11988/ckyyb.20190971
THE TENTH NATIONAL YOUTH CONFERENCE ON GEOMECHANICS ANDGEOTECHNICAL ENGINEERING

Experimental Study on Strength of Alkali-treated Red Clay

  • ZHANG Yao-dan1, CHEN Jun2, SHI Peng-chao3, CHEN Tai-xu1, YANG Heng1, YANG Yong-yu1
Author information +
History +

Abstract

The effect of alkali solution reinforcing red clay was investigated in this paper in the aim of improving its mechanical strength. Temperature, dry density of red clay, and reinforcement method were set varied in the test. The mechanical properties of red clay treated with alkali under different stress paths were examined using a stress-strain controlled triaxial apparatus. Results demonstrated that the mechanical strength of alkali-treated red clay increased with the rising of curing temperature. At optimal temperature, the unconfined compressive strength increased by 90.2%; and given optimal dry density, the alkali-treated red clay sample witnessed a peak mechanical strength of 162.1 kPa. The reinforcement effect reached the optimum when alkali solution was blended into red clay. Moreover, triaxial shear test under different stress paths unveiled that the shear strength of alkali-treated red clay increased under the following three conditions: CTC (Conventional Triaxial Test which simulates the loading process with mean principal stress rising), RTC (Triaxial Test which simulates lateral unloading process with mean principal stress reducing), and TC (Triaxial Test which simulates lateral unloading and axial loading in the meantime with mean principal stress unchanged). The c value of red clay under effective stress path increased by 77.84% and 20.36% under CTC and RTC, respectively, and the value of φ changed little, whereas under the TC path, the c value remained basically unchanged, and the value of φ increased by 20.51%. The research results are of practical significance for the reinforcement of red clay foundation or foundation pit support design.

Key words

red clay / alkali treatment / reinforcement / stress path / mechanical properties

Cite this article

Download Citations
ZHANG Yao-dan, CHEN Jun, SHI Peng-chao, CHEN Tai-xu, YANG Heng, YANG Yong-yu. Experimental Study on Strength of Alkali-treated Red Clay[J]. Journal of Changjiang River Scientific Research Institute. 2020, 37(3): 170-177 https://doi.org/10.11988/ckyyb.20190971

References

[1] 廖义玲,毕庆涛,席先武,等.关于红黏土先期固结压力的探讨.岩土力学,2006, 27(1):1931-1934.
[2] 廖义玲,贺 珺,秦 刚,等.中国南方红粘土工程属性的变化规律.贵州科学,2008,26(4):53-58.
[3] 廖义玲.贵州碳酸盐岩地表堆积物的地质特征及其演化.贵州科学,2000,18(4):267-271.
[4] 胡文华,刘超群,刘中启,等.水泥或石灰改良红黏土的力学强度特性试验研究.路基工程,2017(5): 11-14,19.
[5] 刘之葵,郭 彤,王 剑.粉煤灰和二灰对桂林红黏土力学性质的影响.水文地质工程地质,2017,44(3):86-92.
[6] 孙志亮,郭爱国,太 俊.膨胀土与红黏土石灰改性对比试验研究.岩土力学,2013,34(增刊2):150-155.
[7] 王 麒,陈 筠,赵 鹏,等.碱污染红黏土物理性质及微观结构试验研究.地下空间与工程学报,2017,13(6): 1483-1492.
[8] 陈 筠,赵 鹏,何维锋,等.碱污染红黏土抗剪强度特性室内试验研究.长江科学院院报,2017,34(12):94-100.
[9] 陈 筠,王 麒,于明圆,等.碱污染红黏土抗剪强度及破裂面微观结构特征研究.工程地质学报, 2018, 26(5): 1300-1310.
[10] 赵 蕾,陈 筠,郑 莆,等.既有红黏土地基压密固结效应研究.科学技术与工程,2016,16(2): 229-234,248.
[11] 赵 鹏,陈 筠,何维锋,等.碱污染红黏土土工试验方法温度效应影响研究.科学技术与工程,2017, 17(16): 122-127.
[12] 张浚枫.酸雨蚀变下云南红土的宏微观特性及机理研究.昆明:昆明理工大学,2017.
[13] 李 高.浸泡条件下碱污染红土宏微观特性研究. 昆明:昆明理工大学,2016.
[14] 李云章.湿陷性黄土地基碱液加固.建筑结构学报,1982(1):69-80.
[15] CECS 68—1994,氢氧化钠溶液(碱液)加固湿陷性黄土地基技术规程.北京:中国标准出版社,1994.
[16] 李宏义,刘洪平.碱液法加固新近堆积黄土地基的研究.工程勘察,1990(4):1-6.
[17] 朱志坤.干密度和含水量对太原重塑黄土强度及强度参数影响的研究.太原:太原理工大学,2018.
[18] 于康康.碱液加固黄土体的工程性能研究.西安:西安建筑科技大学,2015.
[19] 常留成.红黏土工程特性的温度效应试验研究.南昌:东华理工大学,2018.
[20] GB/T 50123—1999,土工试验方法标准.北京:中国计划出版社,1999.
[21] LAMBE T W. Stress Path Method. Journal of the Soil Mechanics and Foundation Division, ASCE, 1967, 93(SM6): 309-331.
[22] AN H. Study of Shear Strength of Loess under High Stress State. Journal of Engineering Geology, 2015, 23(2): 252-259.
[23] 岳建刚.不同应力路径下南昌红土的变形与强度特性研究.徐州:中国矿业大学,2017.
[24] 李广信.高等土力学.北京:清华大学出版社,2004.
[25] 陈 筠,高 彬,张瑶丹,等.不同应力路径下红黏土的力学特性与含水率的变化规律试验研究.水利水电技术,2019,50(2):53-60.
[26] 高 彬,陈 筠,杨 恒,等.红黏土在不同应力路径下的力学特性试验研究.地下空间与工程学报,2018, 14(5):1202-1212.
PDF(4102 KB)

Accesses

Citation

Detail

Sections
Recommended

/