Joint Design Analysis of Snowmelt Flood Based on MCMC Parameter Optimization

HE Chao-fei, CHEN Fu-long, ZHANG Zhi-jun, YANG Kuan, HE Xin-lin, LONG Ai-hua

Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (11) : 52-58.

PDF(2138 KB)
PDF(2138 KB)
Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (11) : 52-58. DOI: 10.11988/ckyyb.20190961
FLOOD PREVENTION AND DISASTER REDUCTION

Joint Design Analysis of Snowmelt Flood Based on MCMC Parameter Optimization

  • HE Chao-fei1, CHEN Fu-long1, ZHANG Zhi-jun1, YANG Kuan1, HE Xin-lin1, LONG Ai-hua1,2
Author information +
History +

Abstract

Driven by multiple characteristic attributes, flood is inherently affected by multiple concurrent or continuous driving factors, which aggravates the unpredictability of flood occurrence. In many risk assessment and design applications, the multi-hazards of extreme situations and compound events are often ignored. In view of the design flaws of univariate floods, the peak volume marginal distribution was constructed using GEV (Generalized Extreme Value) distribution and GPD (Generalized Pareto Distribution). The joint probability distribution under extreme conditions was established using the Gaussian Copula function with parameters optimized by MCMC (Markov Chain Monte Carlo). Furthermore, the design flood process line was derived with 500-year-event flood as an example. The control basin of the Manas River was taken as the research area. Results demonstrate that the joint distribution fitting effect of the Gaussian Copula function with MCMC-optimized parameters is better than that of the correlation index method and the local optimization algorithm. The design value under mutual influence of the variables is correspondingly greater than the flood design value under the control of a single variable. The design growth rate of 90 h in the design flood process line is 24.19%. Therefore, the new flood control standard established by the joint distribution under parameter optimization provides a more scientific and reasonable basis for the safety design of flood control and disaster mitigation for the Manas River reservoir in flood season.

Key words

snowmelt / flood / joint design / peak fitting / MCMC / Copula function / recurrence period

Cite this article

Download Citations
HE Chao-fei, CHEN Fu-long, ZHANG Zhi-jun, YANG Kuan, HE Xin-lin, LONG Ai-hua. Joint Design Analysis of Snowmelt Flood Based on MCMC Parameter Optimization[J]. Journal of Changjiang River Scientific Research Institute. 2020, 37(11): 52-58 https://doi.org/10.11988/ckyyb.20190961

References

[1] VAHEDIFARD F, AGHAKOUCHAK A, JAFARI N H. Compound Hazards Yield Louisiana Flood[J]. Science, 2016, 353(6306):1374-1374.
[2] 熊立华, 郭生练. 两变量极值分布在洪水频率分析中的应用研究 [J]. 长江科学院院报, 2004, 21(2): 35-37.
[3] SALVADORI G, DURANTE F, DE MICHELE C, et al. A Multivariate Copula-based Framework for Dealing with Hazard Scenarios and Failure Probabilities[J]. Water Resources Research, 2016, 52(5):3701-3721.
[4] FAVRE A C,ADLOUNI S E,PERREAULT L,et al. Multivariate Hydrological Frequency Analysis Using Copulas[J]. Water Resources Research,2004,40(1):290-294.
[5] DE MICHELE C, SALVADORI G, CANOSSI M, et al. Bivariate Statistical Approach to Check Adequacy of Dam Spillway[J]. Journal of Hydrologic Engineering, 2005, 10(1):50-57.
[6] 肖 义, 郭生练, 刘 攀, 等. 基于两变量分布的峰量联合分析 [J]. 长江科学院院报, 2007,24(2): 13-16,21.
[7] 陈 晶, 王文圣. Copula预测方法及其在年径流预测中的应用 [J]. 水力发电学报, 2015, 34(4): 16-21.
[8] 林 娴, 欧阳昊, 陈晓宏, 等. 基于Copula函数的组合变量联合概率分布研究及应用 [J]. 水文, 2017, 37(1): 1-7.
[9] 高玉琴, 叶 柳, 赖丽娟. 基于G-H copula函数的秦淮河流域洪水风险分析 [J]. 水资源与水工程学报, 2018, 29(1): 172-177.
[10]李建昌, 李继清. 应用超阈值抽样及Copula函数推求水库设计洪水 [J]. 水文, 2018, 38(2): 1-7.
[11]BÁRDOSSY A. Copula-based Geostatistical Models for Groundwater Quality Parameters[J]. Water Resources Research, 2006, 42(11): 11416-11416.
[12]牛 晨, 王双银, 吴素娟. 基于线性矩法的短历时暴雨频率分布研究 [J]. 长江科学院院报, 2019, 36(8): 55-60.
[13]BRAHIMI B, CHEBANA F, NECIR A. Copula Representation of Bivariate L-moments: A New Estimation Method for Multiparameter Two-dimensional Copula Models[J]. Mathematische Operationsforschung und Statistik, 2015, 49(3): 497-521.
[14]PARENT E, FAVRE A C, BERNIER J, et al. Copula Models for Frequency Analysis What Can Be Learned from a Bayesian Perspective?[J]. Advances in Water Resources, 2014, 63(2):91-103.
[15]RAYENS B. An Introduction to Copulas[J]. Technometrics, 2000, 42(3):317-317.
[16]KUCHMENT L S, DEMIDOV V N. On the Application of Copula Theory for Determination of Probabilistic Characteristics of Springflood[J]. Russian Meteorology & Hydrology, 2013, 38(4):263-271.
[17]GENEST C, RIVEST L P. Statistical Inference Procedures for Bivariate Archimedean Copulas[J]. Journal of the American Statistical Association, 1993, 88(423):1034-1043.
[18]WALTZ R A, MORALES J L, NOCEDAL J, et al. An Interior Algorithm for Nonlinear Optimization That Combines Line Search and Trust Region Steps[J]. Mathematical Programming, 2006, 107(3):391-408.
[19]ANDRIEU C, THOMS J. A Tutorial on Adaptive MCMC [J]. Statistics and Computing, 2008,18: 343-373.
[20]陈 平, 及晓光, 徐好梅. 基于一维和二维耦合数学模型的南澧河洪水风险分析 [J]. 长江科学院院报, 2018, 35(11): 52-56.
PDF(2138 KB)

Accesses

Citation

Detail

Sections
Recommended

/