Mechanical Properties and Homogenization Properties of Composite Concrete after High Temperature Curing

WEI Tao, CHEN Guo-qing, XU Peng

Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (12) : 157-164.

PDF(5592 KB)
PDF(5592 KB)
Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (12) : 157-164. DOI: 10.11988/ckyyb.20190936
HYDRAULIC STRUCTURE AND MATERIAL

Mechanical Properties and Homogenization Properties of Composite Concrete after High Temperature Curing

  • WEI Tao1,2, CHEN Guo-qing1,2, XU Peng1,2
Author information +
History +

Abstract

To tackle the problems of strength loss and poor durability of concrete in high geothermal tunnel, we examined the mechanical properties of composite concretes undergone thermal curing mixed with steel fiber, polypropylene fiber and vitrified microspheres, hence revealing the variation of compressive strength, tensile strength and failure characteristics of composite concretes with curing temperature. Furthermore, we deduced the formula of uniaxial compression strength of composite concretes considering the thermal-force relationship based on the homogenization theory. Results unveiled that the composite concretes are of higher compressive strength and tensile strength compared with ordinary concrete with no such mixtures, and have smaller strength loss after thermal curing. Failed sample is cracked but not separated, implying higher residual strength. The inclusion materials in the composite concretes attribute to the strength and durability after high temperature curing. The concrete strength model based on the homogenization theory fits well with the experimental results. The research findings offer theoretical basis for the design and evaluation of lining structures in high geothermal tunnel.

Key words

composite concrete / thermal curing / high geothermal environment / mechanical property / failure characteristics / homogenization theory / thermal stress

Cite this article

Download Citations
WEI Tao, CHEN Guo-qing, XU Peng. Mechanical Properties and Homogenization Properties of Composite Concrete after High Temperature Curing[J]. Journal of Changjiang River Scientific Research Institute. 2020, 37(12): 157-164 https://doi.org/10.11988/ckyyb.20190936

References

[1] 黄润秋, 王贤能, 唐胜传. 深埋长隧道工程开挖的主要地质灾害问题研究[J]. 地质灾害与环境保护, 1997,8(1):50-68.
[2] SHEN D, JIANG J, SHEN J, et al. Influence of Curing Temperature on Autogenous Shrinkage and Cracking Resistance of High-performance Concrete at an Early Age[J]. Construction & Building Materials,2016,103:67-76.
[3] 穆 震. 高地温环境对隧道衬砌混凝土性能影响研究[D]. 成都: 西南交通大学, 2011.
[4] 姚 坚, 朱合华, 闫治国, 等. 隧道衬砌混凝土高温后力学性能试验研究[J]. 地下空间与工程学报, 2007(1): 66-72.
[5] 王玉锁, 叶跃忠, 杨 超, 等. 高地热大埋深环境隧道支护结构受力分析[J]. 西南交通大学学报, 2014, 49(2): 260-267.
[6] 杨成蛟, 黄承逵, 车 轶, 等. 混杂纤维混凝土的力学性能及抗渗性能[J]. 建筑材料学报, 2008, 11(1): 93-97.
[7] JAMERAN A, IBRAHIM I S, YAZAN S H, et al. Mechanical Properties of Steel-polypropylene Fibre Reinforced Concrete under Elevated Temperature[J]. Procedia Engineering, 2015,125: 818-824.
[8] 庞建勇, 黄金坤, 姚文杰, 等. 巷道隔热喷射混凝土强度及导热性能试验研究[J]. 长江科学院院报, 2018, 35(2): 119-124.
[9] 张泽平, 董彦莉, 李 珠. 玻化微珠保温混凝土试验研究[J]. 新型建筑材料, 2007, 34(11): 73-75.
[10]ZULKIFELI M F H B M, SAMAN H B M. Compressive and Flexural Strength of Expanded Perlite Aggregate Mortar Subjected to High Temperatures[C]//AIP Conference Proceedings, 2017, 1875(1): 1-8. Doi: 10.1063/1.4998377.
[11]唐欣薇, 张楚汉. 基于均匀化理论的混凝土宏细观力学特性研究[J]. 计算力学学报, 2009, 26(6): 121-126.
[12]AOUISSI F, YANG C C, BRAHMA A, et al. Study of the Influence of the Interfacial Transition Zone on the Elastic Modulus of Concrete Using a Triphasic Model[J]. Journal of Adhesion Science & Technology, 2016, 30(9): 994-1005.
[13]白卫峰, 陈健云, 范书立. 细观夹杂理论预测湿态混凝土抗压强度[J]. 工程力学, 2008, 25(11): 134-140.
[14]赵延军, 刘春太, 李克华, 等. 三维取向短纤维增强复合材料弹性模量的计算[J]. 玻璃钢/复合材料, 2007(4): 14-17.
[15]ZHANG Y, YAN Z, JU J, et al. A Multi-level Micromechanical Model for Elastic Properties of Hybrid Fiber Reinforced Concrete[J]. Construction and Building Materials, 2017, 152: 804-817.
[16]朱其志, 王岩岩, 仇晶晶, 等. 准脆性岩石水力耦合不排水多尺度本构模型[J]. 河海大学学报(自然科学版), 2018, 46(2): 165-170.
[17]ESHELBY J D. The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems[J]. Proceedings of the Royal Society of London, 1957, 241(1226): 376-396.
[18]陈益峰, 李典庆, 荣 冠, 等. 脆性岩石损伤与热传导特性的细观力学模型[J]. 岩石力学与工程报, 2011, 30(10): 1959-1969.
PDF(5592 KB)

Accesses

Citation

Detail

Sections
Recommended

/