Water Quality Prediction Using an ARIMA-SVR Hybrid Model

LUO Xue-ke, HE Yun-xiao, LIU Peng, LI Wen

Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (10) : 21-27.

PDF(4598 KB)
PDF(4598 KB)
Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (10) : 21-27. DOI: 10.11988/ckyyb.201908087
WATER RESOURCES AND ENVIRONMENT

Water Quality Prediction Using an ARIMA-SVR Hybrid Model

  • LUO Xue-ke1, HE Yun-xiao2, LIU Peng2, LI Wen2
Author information +
History +

Abstract

The research aims to tackle the difficulty in obtaining the mechanism of water quality change in complex waters and modeling water quality prediction as well as the low accuracy of prediction. A water quality prediction method integrating Autoregressive Integrated Moving Average (ARIMA) model and Support Vector Machine Regression (SVR) model is established. After pretreatment, the data are linearly fitted by ARIMA model, and then the residual is predicted by SVR model to compensate for the non-linear change. The monitoring data of pH value and dissolved oxygen in Chaohu Lake basin from 2004 to 2015 are selected as experimental samples. Analysis by HP filtering method shows that the two sets of data have different trends and fluctuation characteristics. The prediction effect of the hybrid model is analyzed through comparative study on evaluation indicators. The results conclude that the present model has high accuracy with the correlation coefficients between predicted values and observed values of pH value and dissolved oxygen both reaching 0.99, the root mean square error 0.20 and 0.61, and the mean absolute percentage error 2.2% and 6.6%, respectively. The ARIMA-SVR hybrid model is of high prediction accuracy and strong generalization ability, suitable for water quality prediction in complex waters.

Key words

water quality prediction / ARIMA / SVR / hybrid model / dissolved oxygen

Cite this article

Download Citations
LUO Xue-ke, HE Yun-xiao, LIU Peng, LI Wen. Water Quality Prediction Using an ARIMA-SVR Hybrid Model[J]. Journal of Changjiang River Scientific Research Institute. 2020, 37(10): 21-27 https://doi.org/10.11988/ckyyb.201908087

References

[1] 李如忠. 水质预测理论模式研究进展与趋势分析[J]. 合肥工业大学学报(自然科学版),2006,29(1):26-29.
[2] 周彦辰,胡铁松,陈 进,等. 耦合动态方程的神经网络模型在水质预测中的应用[J].长江科学院院报,2017,34(9):1-5.
[3] 周志青,邹国防,王 磊,等. 基于ARIMA/RBF-NN的时间序列水质预测模型研究[J]. 科技通报,2017,33(9):236-240.
[4] 吴 静,李振波,朱 玲,等. 融合ARIMA模型和GAWNN的溶解氧含量预测方法[J]. 农业机械学报,2017,48(增刊):205-210.
[5] TAN Q F,LEI X H,WANG X,et al. An Adaptive Middle and Long-term Runoff Forecast Model Using EEMD-ANN Hybrid Approach[J]. Journal of Hydrology, 2018, 567: 767-780.
[6] 王军栋,齐维贵. 基于EMD-SVM的江水浊度预测方法研究[J]. 电子学报,2009,37(10):2130-2133.
[7] 黄 鹤,卢文喜,姜 雪. 支持向量机在水质评价及水位动态预测中的应用[J]. 中国农村水利水电,2012(9):30-33.
[8] RAUF A U, GHUMMAN A R, AHMAD S, et al. Performance Assessment of Artificial Neural Networks and Support Vector Regression Models for Stream Flow Predictions[J]. Environmental Monitoring and Assessment, doi: 10.1007/s10661-018-7012-9.
[9] 孙轶轩,邵春福,计 寻,等. 基于ARIMA与信息粒化SVR组合模型的交通事故时序预测[J]. 清华大学学报(自然科学版),2014,54(3):348-353.
[10]宋国君,国潇丹,杨 啸,等. 沈阳市PM2.5浓度ARIMA-SVM 组合预测研究[J].中国环境科学,2018,38(11):4031-4039.
[11]董国庆,孙伯寅,李 峥,等. 时间序列模型在水源水化学耗氧量预测中的应用[J]. 环境与健康杂志,2018,35(3):234-237.
[12]刘潭秋,王巧玲. 基于 ARIMA 模型的湘江流域 DO 和 NH4+-N 含量贝叶斯预测[J]. 湖南农业大学学报(自然科学版),2017,43(5):575-580.
[13]戴青松,王沛芳,王 超,等. 基于LWCA-SVM模型对
洪泽湖饮用水源地二河闸断面水质的预测分析[J]. 中国农村水利水电,2017(7):62-66.
[14]黄红梅.应用时间序列分析[M].北京:清华大学出版社,2016.
[15]张 森,石为人,石 欣,等. 基于偏最小二乘回归和SVM的水质预测[J].计算机工程与应用,2015,51(15):249-254.
[16]周志华.机器学习[M].北京:清华大学出版社,2016.
[17]赵志刚,张纯杰,苟向锋,等. 基于粒子群优化支持向量机的太阳电池温度预测[J]. 物理学报,2015,64(8):1-7.
PDF(4598 KB)

Accesses

Citation

Detail

Sections
Recommended

/