Experimental Study on Group Anchor Effect in Strongly Unloading Rock Mass of a High and Steep Slope

SONG Cui-rong, LI Zheng-bing, ZHANG Yin

Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (10) : 117-124.

PDF(5655 KB)
PDF(5655 KB)
Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (10) : 117-124. DOI: 10.11988/ckyyb.2019077224
ROCK-SOIL ENGINEERING

Experimental Study on Group Anchor Effect in Strongly Unloading Rock Mass of a High and Steep Slope

  • SONG Cui-rong1, LI Zheng-bing1,2, ZHANG Yin2
Author information +
History +

Abstract

Pressure-distributed unbonded prestressing anchor cable is the major support for the strongly unloading rock mass in the left-bank high and steep slope of Jinping Hydropower Station. Large anchoring force and small spacing of the anchorage gave rise to notable compressional deformation of the rock mass; the mutual influence of anchor cables led to massive prestress loss. A physical model test on the anchoring of unloading rock mass was carried out to examine the displacement and deformation of rock mass as well as the superposition of anchoring force and prestress loss in association with Mindlin’s solution. The anchor group effect mainly includes 1) the compression of unloading rock mass posed by stress superposition; 2) the prestress loss of anchor cable caused by tensions on adjacent ones. Furthermore, the calculation methods of rock mass displacement and prestress loss rate were obtained via experimental analysis and theoretical derivation. Reasonable spacing of anchor cables and appropriate increase of anchor cable length can effectively reduce the prestress loss caused by group anchor effect.

Key words

high and steep slope / unloading rock mass / pre-stressed anchor cable / group anchor effect / physical model test

Cite this article

Download Citations
SONG Cui-rong, LI Zheng-bing, ZHANG Yin. Experimental Study on Group Anchor Effect in Strongly Unloading Rock Mass of a High and Steep Slope[J]. Journal of Changjiang River Scientific Research Institute. 2020, 37(10): 117-124 https://doi.org/10.11988/ckyyb.2019077224

References

[1] 黄润秋.岩石高边坡稳定性工程地质分析[J].工程地质学报,2013,21(6):870.
[2] 李英勇,王梦恕,张顶立,等.锚索预应力变化影响因素及模型研究[J].岩石力学与工程学报,2008,27(增刊1):3140-146.
[3] 李正兵. 强卸荷、倾倒拉裂破碎岩体条件下高边坡岩锚破坏性试验研究[J]. 水利水电技术,2009,40(2):22-26.
[4] 程良奎,李象范.岩土锚固·土钉·喷射混凝土:原理、设计与应用[M]. 北京:中国建筑工业出版社,2008:1-136.
[5] 洪 亮. 压力分散型锚索锚固机理及承载板合理间距的研究[D].成都:西南交通大学,2013.
[6] 顾金才,沈 俊,陈安敏,等.锚索预应力在岩体内引起的应变状态模型试验研究[J].岩石力学与工程学报,2000,19(增刊1):917-921.
[7] 曾祥勇,唐树名,邓安福. 锚索加固边坡破裂结构岩体模型试验[J]. 重庆大学学报(自然科学版),2004, 27(8):128-135.
[8] 刘 明. 锦屏一级水电站左岸边坡大规模开挖的地质力学响应研究[D]. 成都:成都理工大学,2014.
[9] 王 胜. 锦屏一级水电站左岸抗力体地质缺陷及加固处理技术研究[D].成都:成都理工大学,2010.
[10]程良奎,胡建林.摩擦式锚杆作用原理及其工程应用[J].岩石力学与工程学报,1989,8(2):119-126.
[11]孟刘鸿,周德培.压力分散型锚索内力变化规律试验研究[J].岩土力学,2012,33(4):1040-1044,1050.
[12]孙学毅.边坡加固机理探讨[J].岩石力学与工程学报,2004,23(16):2818-2823.
[13]陆锡铭,朱晗迓.破碎岩质边坡中群锚效应试验研究[J].公路交通科技,2005(增刊1):66-68,80.
[14]张发明,刘 宁,赵维炳.岩质边坡预应力锚固的力学行为及群锚效应[J].岩石力学与工程学报,2000,19(增刊1):1077-1080.
[15]尤春安,战玉宝.预应力锚索锚固段的应力分布规律及分析[J].岩土工程学报,2004,24(6): 925-28.
[16]MINDLIN R D. Force at a Point in the Interior of a Semi-infinite Solid[J]. Physics, 1936, 7(5): 195-202.
PDF(5655 KB)

Accesses

Citation

Detail

Sections
Recommended

/