An Improved Method of Anomaly Recognition of Dam Safety Monitoring Data Based on M-Estimator and Standard Quartile Range

YANG Zhe, LI Yan-ling, ZHANG Peng, LU Xiang, LI Xing

Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (6) : 77-80.

PDF(2985 KB)
PDF(2985 KB)
Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (6) : 77-80. DOI: 10.11988/ckyyb.20190335
ENGINEERING SAFETY AND DISASTER PREVENTION

An Improved Method of Anomaly Recognition of Dam Safety Monitoring Data Based on M-Estimator and Standard Quartile Range

  • YANG Zhe1,2, LI Yan-ling1,2, ZHANG Peng3, LU Xiang1,2, LI Xing1,2
Author information +
History +

Abstract

Anomaly recognition of safety monitoring data of hydropower station is a prerequisite for scientific evaluation of dam safety. Traditional 3σ criterion is prone to cause miss judgment when applied to the online anomaly identification of “step type” and “oscillating type” monitoring data series. In view of this, we established an improved criterion by replacing the general position parameter and general scale parameter in the 3σ criteria with Andrews M-estimator and standard quartile range. Engineering practice and sensitivity analysis prove that the method could effectively eliminate the adverse effects of anomalies on the recognition results. The proportion of anti-anomaly amounts 25%, and the accuracy and reliability of anomaly recognition are improved obviously.

Key words

anomaly identification / 3σ criterion / M-estimator / standard quartile range / dam safety condition

Cite this article

Download Citations
YANG Zhe, LI Yan-ling, ZHANG Peng, LU Xiang, LI Xing. An Improved Method of Anomaly Recognition of Dam Safety Monitoring Data Based on M-Estimator and Standard Quartile Range[J]. Journal of Changjiang River Scientific Research Institute. 2020, 37(6): 77-80 https://doi.org/10.11988/ckyyb.20190335

References

[1] YANG G, WANG Y, LIU H. Statistical Model’s Application in the Gross Error Recognition of Deformation Monitoring Data of Dam[C]//The Electrical Equipment Technology Committee for Rail Transportation. Proceedings of the 2013 International Conference on Electrical and Information Technologies for Rail Transportation. Changchun, November 7-10, 2013: 321-329.
[2] 唐 敏 ,何金平, 李珍照, 等. 大坝安全监测异常测值分析及其模块的实现[J]. 长江科学院院报, 2005, 22(3):29-31.
[3] 花胜强, 胡少英, 罗孝兵, 等. 大坝位移监测中的粗差剔除方法[J]. 水力发电,2017,43(9):110-112.
[4] 周元春, 甘孝清, 李端有. 大坝安全监测数据粗差识别技术研究[J]. 长江科学院院报, 2011,28(2):20-24.
[5] 张兴国, 王子影, 李盛乐, 等. 地震前兆数据异常自动检测报警系统[J]. 地震地磁观测与研究, 2011, 32(1):101-108.
[6] 许贝贝, 崔晨风. 大坝自动化监测数据粗差处理方法研究[J]. 测绘地理信息, 2015, 40(2):59-61.
[7] 毛亚纯. 基于测量机器人的变形监测系统研究[D]. 沈阳:东北大学, 2011.
[8] 赵晨阳.稳健统计学的产生与发展[D]. 西安:西北大学,2013.
[9] 钟振宇, 蒋佩英. 中位值和稳健四分位数间距的直观应用[J]. 中国科技投资, 2013(17):123-124.
[10]王晓娟, 黄首先, 姜 峰, 等. 四分位数及迭代稳健统计法在实验室能力验证中的应用[J]. 现代测量与实验室管理, 2016, 24(3):42-45.
PDF(2985 KB)

Accesses

Citation

Detail

Sections
Recommended

/