Quantitative Analysis of the Effects of Vegetation on Soil Erosion in the Three-River Headwaters Region Using Logarithmic Mean Divisia Index Model

HE Qian, DAI Xiao-ai

Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (7) : 61-67.

PDF(10797 KB)
PDF(10797 KB)
Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (7) : 61-67. DOI: 10.11988/ckyyb.20190279
WATERSOIL CONSERVATION AND ECOCONSTRUCTION

Quantitative Analysis of the Effects of Vegetation on Soil Erosion in the Three-River Headwaters Region Using Logarithmic Mean Divisia Index Model

  • HE Qian, DAI Xiao-ai
Author information +
History +

Abstract

In the purpose of quantitatively evaluating the influence of vegetation change on soil erosion modulus, we conducted pixel statistical calculation and adopted the RUSLE model to explore the changes of vegetation coverage and soil erosion modulus in three periods from 2000 to 2015. Moreover, we employed the logarithmic mean Divisia index (LMDI) decomposition model was used to quantitatively analyze the contribution of vegetation to the changes of soil erosion modulus from the pixel scale. Results showed that the vegetation coverage in the Three-River Headwaters Region displayed an overall increasing trend, yet still with some differences in different periods. In general, the soil erosion modulus had been decreasing, and the spatial distribution characteristics between the changes of erosion modulus and the changes of vegetation coverage in each period were not identical, mainly because soil erosion change was caused by multiple factors. Vegetation had a positive effect on changes of soil erosion, and the contribution values ranged between -100 t·hm-2·a-1 and 100 t·hm-2·a-1. The spatial distribution characteristics of the contribution values were consistent with the changes of vegetation coverage. The LMDI model is a good method to quantitatively analyze the effects of vegetation on changes of soil erosion modulus from the pixel scale and provides new ideas for soil erosion management. The ecological conservation and restoration project in the Three-River Headwaters Nature Reserve has achieved benefits, and environmental projects should be strengthened.

Key words

soil erosion / vegetation / LMDI / RUSLE / quantitative analysis / Three-River headwater region

Cite this article

Download Citations
HE Qian, DAI Xiao-ai. Quantitative Analysis of the Effects of Vegetation on Soil Erosion in the Three-River Headwaters Region Using Logarithmic Mean Divisia Index Model[J]. Journal of Changjiang River Scientific Research Institute. 2020, 37(7): 61-67 https://doi.org/10.11988/ckyyb.20190279

References

[1] 康惠惠, 潘 韬, 盖艾鸿, 等. 生态退化与恢复对三江源区土壤保持功能的影响[J]. 水土保持通报, 2017,37(3):7-14.
[2] 乔 飞, 富 国, 徐香勤, 等. 三江源区水源涵养功能评估[J]. 环境科学研究, 2018,31(6):1010-1018.
[3] 梁健超, 丁志锋, 张春兰, 等. 青海三江源国家级自然保护区麦秀分区鸟类多样性空间格局及热点区域研究[J]. 生物多样性, 2017,25(3):294-303.
[4] 韦 晶, 郭亚敏, 孙 林, 等. 三江源地区生态环境脆弱性评价[J]. 生态学杂志, 2015,34(7):1968-1975.
[5] GUO B, ZHOU Y, ZHU J, et al. Spatial Patterns of Ecosystem Vulnerability Changes During 2001—2011 in the Three-River Source Region of the Qinghai-Tibetan Plateau, China[J]. Journal of Arid Land,2016,8(1):23-35.
[6] 蒋 冲, 高艳妮, 李 芬, 等. 1956—2010年三江源区水土流失状况演变[J]. 环境科学研究, 2017,30(1):20-29.
[7] 王 欢, 高江波, 侯文娟. 基于地理探测器的喀斯特不同地貌形态类型区土壤侵蚀定量归因[J]. 地理学报, 2019(2):271-286.
[8] 饶恩明, 肖 燚. 四川省生态系统土壤保持功能空间特征及其影响因素[J]. 生态学报, 2018,38(24):8741-8749.
[9] 丁 杰, 杨新兵, 朱辰光, 等. 崇礼清水河流域土壤侵蚀空间格局及其影响因素研究[J]. 水土保持学报, 2018,32(4):73-80.
[10]王 涛. 基于RUSLE模型的土壤侵蚀影响因素定量评估:以陕北洛河流域为例[J]. 环境科学与技术, 2018,41(8):170-177.
[11]肖继兵, 孙占祥, 蒋春光, 等. 辽西地区农耕坡地土壤侵蚀影响因素及相关关系[J]. 水土保持学报, 2015,29(5):13-19.
[12]樊登星, 余新晓, 贾国栋, 等. 北京山区灌草坡面水土流失特征及其影响因素[J]. 中国水土保持科学, 2014,12(2):24-28.
[13]马 骞, 于兴修, 刘前进, 等. 沂蒙山区土壤侵蚀空间分布及其影响因素动态变化[J]. 中国农业科学, 2010,43(22):4652-4662.
[14]李秀霞, 倪晋仁. 土壤侵蚀及其影响因素空间相关性分析[J]. 地理科学进展, 2009,28(2):161-166.
[15]马贤磊, 唐 亮, 孙萌丽. 城镇土地生态环境效应的影响因素研究:基于LMDI分解模型[J]. 南京农业大学学报(社会科学版), 2018,18(2):117-128.
[16]ANG B W. The LMDI Approach to Decomposition Analysis: A Practical Guide[J]. Energy Policy, 2005, 33(7): 867-871.
[17]ANG B W. LMDI Decomposition Approach: A Guide for Implementation[J]. Energy Policy, 2015, 86: 233-238.
[18]ANG B W. Decomposition Analysis for Policymaking in Energy[J]. Energy Policy, 2004, 32(9): 1131-1139.
[19]YANG Y, ZHOU Y, POON J, et al. China's Carbon Dioxide Emission and Driving Factors: A Spatial Analysis[J]. Journal of Cleaner Production, 2019, 211: 640-651.
[20]ZHANG S, SU X, SINGH V P, et al. Logarithmic Mean Divisia Index (LMDI) Decomposition Analysis of Changes in Agricultural Water Use: A Case Study of the Middle Reaches of the Heihe River Basin, China[J]. Agricultural Water Management, 2018, 208: 422-430.
[21]MA M, YAN R, DU Y, et al. A Methodology to Assess China's Building Energy Savings at the National Level: An IPAT-LMDI Model Approach[J]. Journal of Cleaner Production, 2017,143: 784-793.
[22]郝瑞彬, 尹力军, 殷书柏. 基于LMDI模型的中国粮食安全变化的耕地因素分解[J]. 江苏农业科学, 2018,46(19):355-358.
[23]马贤磊, 唐亮, 孙萌丽. 城镇土地生态环境效应的影响因素研究:基于LMDI分解模型[J]. 南京农业大学学报(社会科学版), 2018,18(2):117-128.
[24]CHEN H, ZHU Q, PENG C, et al. The Impacts of Climate Change and Human Activities on Biogeochemical Cycles on the Qinghai-Tibetan Plateau[J]. Global Change Biology, 2013,19(10): 2940-2955.
[25]曹 巍, 刘璐璐, 吴 丹. 三江源区土壤侵蚀变化及驱动因素分析[J]. 草业学报, 2018,27(6):10-22.
[26]RENARD K G, FOSTER G R, WEESIES G A. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE)[R]. Washington: United States Department of Agriculture ,1997.
[27]SHARPLEY A N, WILLIAMS J R, UNITED S A R S. EPIC, Erosion/Productivity Impact Calculator: Model documentation[R]. Washington: United States Department of Agriculture, 1993.
[28]蔡崇法, 丁树文, 史志华, 等. 应用USLE模型与地理信息系统IDRISI预测小流域土壤侵蚀量的研究[J]. 水土保持学报, 2000,14(2):19-24.
[29]WISCHMEIER W H, MANNERING J V. Relation of Soil Properties to its Erodibility1[J]. Soil Science Society of America Journal, 1969, 33(1): 131-137.
[30]符素华, 刘宝元, 周贵云, 等. 坡长坡度因子计算工具[J]. 中国水土保持科学, 2015,13(5):105-110.
[31]康琳琦, 周天财, 干友民, 等. 1984-2013年青藏高原土壤侵蚀时空变化特征[J]. 应用与环境生物学报, 2018,24(2):245-253.
[32]黄 勤, 何 晴. 长江经济带碳排放驱动因素及其空间特征:基于LMDI模型[J]. 财经科学, 2017(5):80-92.
[33]ANG B W, ZHANG F Q, CHOI K. Factorizing Changes in Energy and Environmental Indicators Through Decomposition[J]. Energy, 1998, 23(6): 489-495.
[34]李辉霞, 刘国华, 傅伯杰. 基于NDVI的三江源地区植被生长对气候变化和人类活动的响应研究[J]. 生态学报, 2011,31(19):5495-5504.
[35]SHAO Q, CAO W, FAN J, et al. Effects of an Ecological Conservation and Restoration Project in the Three-River Source Region, China[J]. Journal of Geographical Sciences, 2017, 27(2): 183-204.
[36]耿晓平, 铁吉新. 三江源区植被覆盖变化的气候效应初探[J]. 青海气象, 2018(2):30-35.
[37]王雅琼, 刘 彦, 阿 彦, 等. 三江源植被保持土壤能力的时空变化[J]. 环境科学研究, 2016,29(7):1023-1031.
PDF(10797 KB)

Accesses

Citation

Detail

Sections
Recommended

/