Adsorption of Pb2+ on Sediments in the Middle andLower Reaches of the Yangtze River

HAN Ding, LI Rui, TANG Xian-qiang, HU Yuan, GUO Wei-jie

Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (5) : 15-22.

PDF(5552 KB)
PDF(5552 KB)
Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (5) : 15-22. DOI: 10.11988/ckyyb.20190119
WATER RESOURCES AND ENVIRONMENT

Adsorption of Pb2+ on Sediments in the Middle andLower Reaches of the Yangtze River

  • HAN Ding1,2, LI Rui1, TANG Xian-qiang1,3, HU Yuan1, GUO Wei-jie1
Author information +
History +

Abstract

The sediment samples from Wuhan to Chongming Island of Shanghai in the middle and lower reaches of the Yangtze River were collected for studying the characteristics of adsorption of Pb2+ by sediment via oscillatory adsorption test. The effects of sediment concentration, sediment particle size and organic matter content on Pb2+ adsorption were also analyzed. Results show that the adsorption of Pb2+on sediment reaches equilibrium after 20 hours. The adsorption kinetics can be analyzed and fitted by quasi-first-order kinetics, quasi-second-order kinetics and Elovich equation. The fitting coefficients are all above 0.85, and especially the fitting coefficient of quasi-second-order kinetics equation amounts to 0.997 8. The values of fitting correlation coefficient R2 of Langmuir model for isothermal adsorption of Pb2+ are all above 0.9. The isothermal adsorption process of Pb2+ is monolayer adsorption mostly on the surface of sediment mainly in the manner of physical adsorption.With the increase of sediment concentration,the adsorption efficiency enhances significantly.When the sediment concentration increases to 1 g/L, the adsorption efficiency reaches the maximum (≈99.8%). The thermodynamic parameters ΔG < 0 and ΔH > 0 of sediment adsorption for Pb2+ reveals that the process can be carried out spontaneously. Temperature rising is conducive to instigating the adsorption of Pb2+. Organic matter content is in a significant positive correlation (R2=0.968 2, p<0.01) with adsorption energy. The amount of Pb2+ adsorbed by sediment increases with the decrease of sediment particle size. The adsorption of Pb2+ by sediments mainly occurs in particle size groups smaller than 0.074 mm. Monitoring on the sediment concentration, particle size distribution and its chemical composition in the middle and lower reaches of the Yangtze River should be strengthened so as to keep abreast of the influence of water and sediment changes on the migration and transformation of pollutants such as Pb2+.

Key words

sediment / Pb2+ / adsorption / heavy metal / middle and lower reaches of the Yangtze River

Cite this article

Download Citations
HAN Ding, LI Rui, TANG Xian-qiang, HU Yuan, GUO Wei-jie. Adsorption of Pb2+ on Sediments in the Middle andLower Reaches of the Yangtze River[J]. Journal of Changjiang River Scientific Research Institute. 2020, 37(5): 15-22 https://doi.org/10.11988/ckyyb.20190119

References

[1]NEEDLEMAN H. Lead Poisoning[J]. Annual Review of Medicine, 2004, 55: 209-220.
[2] WANG X, HAN Z, WANG W, et al. Continental-scale Geochemical Survey of Lead (Pb) in Mainland China’s Pedosphere: Concentration, Spatial Distribution and Influences[J]. Applied Geochemistry, 2019, 100: 55-63.
[3] HAN L,GAO B,HAO H,et al. Lead Contamination in Sediments in the Past 20 Years: A Challenge for China[J]. Science of the Total Environment,2018,640/641:746.
[4] YANG Z, WANG Y, SHEN Z, et al. Distribution and Speciation of Heavy Metals in Sediments from the Mainstream, Tributaries, and Lakes of the Yangtze River Catchment of Wuhan, China[J]. Journal of Hazardous Materials, 2009, 166(2):1186-1194.
[5] YI Y, YANG Z, ZHANG S. Ecological Risk Assessment of Heavy Metals in Sediment and Human Health Risk Assessment of Heavy Metals in Fishes in the Middle and Lower Reaches of the Yangtze River Basin[J]. Environmental Pollution, 2011, 159(10): 2575-2585.
[6] YANG Z, XIA X, WANG Y, et al. Dissolved and Particulate Partitioning of Trace Elements and Their Spatial-temporal Distribution in the Changjiang River[J]. Journal of Geochemical Exploration, 2014, 145: 114-123.
[7] 方 涛, 张晓华, 肖邦定, 等. 水体悬移质对重金属吸附规律研究[J]. 长江流域资源与环境, 2001, 10(2): 90-97.
[8] 余国文. 长江水中泥沙及悬浮粒子对Pb2+的吸附作用研究[J]. 工业安全与环保, 2007, 33(2):6-8.
[9] 任子航, 马秀兰, 王而力. 西辽河不同粒级沉积物对重金属铅的富集特征[J]. 环境科学与技术, 2014(增刊2):175-182.
[10]HOSSEINI M, SAJJADI N. The Comparison of Selenium and Lead Accumulation Between Contaminated Muddy and Sandy Sediments from Four Estuaries along the Persian Gulf: Effect of Grain Size[J]. Environmental Geochemistry & Health, 2018, 40(4): 1648-1654.
[11]KHAN B, ULLAH H, KHAN S, et al. Sources and Contamination of Heavy Metals in Sediments of Kabul River: The Role of Organic Matter in Metals Retention and Accumulation[J]. Soil and Sediment Contamination: An International Journal, 2016, 25(8): 891-904.
[12]ZHANG M, JIN C C, XU L H, et al. Effect of Temperature, Salinity, and pH on the Adsorption of Lead by Sediment of a Tidal River in East China[C]∥Proceedings of the 2012 International Conference on Biomedical Engineering and Biotechnology (iCBEB). IEEE, Macau, China. May 28-30, 2012: 1389-1391.
[13]王亚平, 王 岚, 许春雪, 等. pH对长江下游沉积物中重金属元素Cd、Pb释放行为的影响[J]. 地质通报, 2012, 31(4): 594-600.
[14]UGOCHUKWU N,MOHAMED I,ALI M,et al. Impacts of Inorganic Ions and Temperature on Lead Adsorption onto Variable charge Soils[J]. Catena,2013,109(5):103-109.
[15]HEGEDÜSOVÁA,HEGEDÜS O,TÓTH T,et al. Adsorption Processes of Lead Ions on the Mixture Surface of Bentonite and Bottom Sediments[J]. Bulletin of Environmental Contamination and Toxicology,2016,97(6):876-880.
[16]HUANG L, JIN Q, TANDON P, et al. High-resolution Insight into the Competitive Adsorption of Heavy Metals on Natural Sediment by Site Energy Distribution[J]. Chemosphere, 2018, 197: 411-419.
[17]MENDE M, SCHWARZ D, STEINBACH C, et al. The Influence of Salt Anions on Heavy Metal Ion Adsorption on the Example of Nickel[J]. Materials, 2018, 11(3):373.
[18]高 宏, 暴维英, 张曙光, 等. 多沙河流污染化学与生态毒理研究[M]. 郑州:黄河水利出版社, 2001.
[19]HE M,ZHENG H,HUANG X,et al. Yangtze River Sediments from Source to Sink Traced with Clay Mineralogy[J].Journal of Asian Earth Sciences,2013,69(12):60-69.
[20]WANG Y,RHOADS B L, DONG W, et al. Impacts of Large Dams on the Complexity of Suspended Sediment Dynamics in the Yangtze River[J]. Journal of Hydrology, 2018, 558: 184-195.
[21]潘婵娟, 黎 睿, 汤显强, 等. 三峡水库蓄水至175 m后干流沉积物理化性质与磷形态分布特征[J]. 环境科学, 2018, 39(6): 113-121.
[22]LI S, ZENG Z, XUE W. Adsorption of Lead Ion from Aqueous Solution by Modified Walnut Shell: Kinetics and Thermodynamics[J]. Environmental Technology, 2018, DOI: 10.1080/09593330.2018.1430172.
[23]水利部长江水利委员会. 长江泥沙公报[M]. 武汉: 长江出版社, 2003—2016.
[24]余国安, 王兆印, 刘 成, 等. 长江中游底泥质量现状调查研究[J]. 泥沙研究, 2008, 8(4): 14-20.
[25]夏福兴, 陈邦林, 吴欣然,等. 长江口细颗粒泥沙对Pb、Cd、Cu的吸附[J]. 华东师范大学学报(自然科学版), 1987(2): 69-76.
[26]唐登勇, 胥瑞晨, 张 聪, 等. 稻壳灰对水中低浓度Pb(Ⅱ)的吸附特性[J]. 中国农村水利水电, 2017(11):74-78.
[27]陈 野, 李青云, 曹慧群. 河流泥沙吸附磷的研究现状与展望[J]. 长江科学院院报, 2014, 31(5): 12-16.
[28]王 岚. 长江水系及流域典型土壤中Cd等重金属元素的环境地球化学行为研究[D]. 北京: 中国地质科学院, 2010.
[29]左 航, 陈艺贞, 陈建华,等. ICP-MS研究黄河三湖河口表层沉积物对Cd2+和Cu2+的吸附-解吸特性[J]. 光谱学与光谱分析, 2017, 37(3): 902-909.
[30]CHEN Y, ZHANG D. Adsorption Kinetics, Isotherm and Thermodynamics Studies of Flavones from Vaccinium Bracteatum Thunb Leaves on NKA-2 Resin[J]. Chemical Engineering Journal, 2014, 254: 579-585.
[31]AHMED R, YAMIN T, ANSARI M S, et al. Sorption Behaviour of Lead(II) Ions from Aqueous Solution onto Haro River Sand[J]. Adsorption Science & Technology, 2009, 24(6): 475-486.
[32]任加国, 武倩倩. 黄河口海域沉积物对重金属的吸附[J]. 海洋地质与第四纪地质, 2009, 29(4): 129-133.

[33]姚晓飞. 南沙河、凉水河重金属污染分析及其运移规律研究[D]. 北京: 北京交通大学, 2011.
[34]吴慧英, 张 颖, 童笔峰, 等. Cd2+、Pb2+在湘江流域河床表层沉积物上的吸附特性研究[J]. 环境工程, 2016, 34(6): 1-5.
[35]SOLTAN M E, RASHED M N, TAHA G M. Heavy Metal Levels and Adsorption Capacity of Nile River Sediments[J]. International Journal of Environmental Analytical Chemistry, 2001, 80(3): 167-186.
[36]黄岁梁, 万兆惠, 王兰香. 泥沙浓度和水相初始浓度对泥沙吸附重金属影响的研究[J]. 环境科学学报, 1995, 15(1): 66-76.
[37]王利花, 周云轩. 大通站水沙关系演变驱动因素分析[J]. 吉林大学学报(地球科学版), 2018, 48(1): 226-233.
[38]TUTEM E, APAK R, UNAL C F. Adsorptive Removal of Chlorophenols from Water by Bituminous Shale[J]. Water Research, 1998, 32(8): 2315-2324.
[39]李璐娟, 夏建国, 刘 朗, 等. 紫色土有机质对团聚体吸附-解吸Pb2+的影响[J]. 生态学杂志, 2014, 33(5):1274-1283.
[40]范德江, 杨作升, 毛 登, 等. 长江与黄河沉积物中粘土矿物及地化成分的组成[J]. 海洋地质与第四纪地质, 2001, 21(4):7-12.
[41]姜腾达. 粘土矿物对水中Pb2+、Cu2+、Cd2+的吸附及机理研究[D]. 长沙: 中南大学, 2014.
[42]陈 萌,吴志强. 泥沙粒径对铜离子吸附贡献率的影响研究[J]. 广东水利水电, 2018(1): 15-18.
PDF(5552 KB)

Accesses

Citation

Detail

Sections
Recommended

/