Determining Specific Surface Area and Shape Index of RecycledAggregate: Calculation and Analysis

LIU Tian-jie, LIU Xin-fei

Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (5) : 170-173.

PDF(3563 KB)
PDF(3563 KB)
Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (5) : 170-173. DOI: 10.11988/ckyyb.20190103
HYDRAULIC STRUCTURE AND MATERIAL

Determining Specific Surface Area and Shape Index of RecycledAggregate: Calculation and Analysis

  • LIU Tian-jie1, LIU Xin-fei2,3
Author information +
History +

Abstract

The size and shape of recycled aggregate particle determine whether the recycled concrete mixture can be closely combined, thus achieving a good forming effect. Specific surface area and shape index are used to reflect the mixing performance of recycled aggregate. By preparing recycled aggregates with particle size of 4.75-9.50 mm and 9.5-19.0 mm by waste pavement concrete, we measured the specific surface area of recycled aggregate through theoretical calculation and net slurry test method; in the meantime we also measure the shape index of recycled aggregate via the shape evaluation method for coarse aggregate, and finally assessed the performance of recycled aggregate. Results demonstrate that the surface of recycled aggregate is rough with many particle edges and corners. The specific surface area of 4.75-9.50 mm and 9.50-19.00 mm recycled aggregate is 5.98 cm2/g and 4.19 cm2/g, respectively, which are higher than the specific surface area of gravel and pebble aggregate; the shape index is 0.172 7 and 0.246 6 respectively, which is inferior. Therefore, aggregate with sphere particle shape and high shape index should be selected for recycled aggregate. The research finding offers a reference for the promotion and utilization of recycled aggregate in practical engineering.

Key words

recycled aggregate / specific surface area / shape index / needle and flaky particles / particle sphericity

Cite this article

Download Citations
LIU Tian-jie, LIU Xin-fei. Determining Specific Surface Area and Shape Index of RecycledAggregate: Calculation and Analysis[J]. Journal of Changjiang River Scientific Research Institute. 2020, 37(5): 170-173 https://doi.org/10.11988/ckyyb.20190103

References

[1] 周文娟,陈家珑,路宏波.我国建筑垃圾资源化现状及对策[J].建筑技术,2009,40(8):741-744.
[2] 韩凤凤. 建筑垃圾资源化产业发展报告发布[N].中国建材报,2015-02-10(1).
[3] 余荣华. 建筑垃圾再生路有多长[N]. 人民日报,2016-04-08(6).
[4] 孙跃东,肖建庄.再生混凝土骨料[J].混凝土,2004(6):33-36.
[5] 李秋义. 混凝土再生骨料[M]. 北京:中国建筑工业出版社, 2011.
[6] 肖建庄,李佳彬,兰 阳.再生混凝土技术研究最新进展与评述[J].混凝土,2003(10):17-20,57.
[7] 郝 彤,刘立新,王仁义等.再生混凝土多孔砖砌体抗剪强度试验研究[J].新型建筑材料,2006(7):51-53.
[8] 卓 玲,陈宝璠.再生骨料混凝土空心砌块砌体的抗压性能[J].硅酸盐通报,2013,32(10):2155-2159,2164.
[9] 刘大庆,陈亮亮,王生云,等.再生混凝土在硫酸盐与干湿循环耦合作用下的耐久性能研究[J].长江科学院院报,2018,35(10):137-142.
[10]王晓龙. 再生骨料透水混凝土生态公路防护材料的研究与应用[D].济南:山东交通学院,2017.
[11]HUANG B, WU H, SHU X, et al. Laboratory Evaluation of Permeability and Strength of Polymer-modified Pervious Concrete[J]. Construction & Building Materials, 2010, 24(5): 818-823.
[12]SHU X, HUANG B, WU H, et al. Performance Comparison of Laboratory and Field Produced Pervious Concrete Mixtures[J]. Construction & Building Materials, 2011, 25(8): 3187-3192.
[13]BHUTTA M A R, TSURUTA K, MIRZA J. Evaluation of High-performance Porous Concrete Properties[J]. Construction & Building Materials, 2012, 31(6):67-73.
[14]秦书生,杨 硕.习近平的绿色发展思想探析[J].理论学刊,2015(6):4-11.
[15]肖建庄,李佳彬,孙振平,等.再生混凝土的抗压强度研究[J].同济大学学报(自然科学版),2004(12):1558-1561.
[16]肖建庄,孙振平,李佳彬,等.废弃混凝土破碎及再生工艺研究[J].建筑技术,2005(2):141-144.
[17]陈守开,刘新飞,郭 磊,等.再生骨料掺配比对再生透水混凝土性能的影响[J].复合材料学报,2018,35(6):1590-1598.
[18]NIXON P J. Recycled Concrete as an Aggregate for Concrete—A Review[J]. Matériaux et Construction, 1978, 11(5): 371.
[19]GB/T 25177—2010,混凝土用再生粗骨料[S]. 北京:中国标准出版社,2010.
[20]GB/T 14685—2011,建筑用卵石、碎石[S]. 中国标准出版社,2011.
[21]周云麟.混凝土骨料比表面积的测定与计算[J].混凝土及加筋混凝土,1984(2):48-51.
[22]柯国军,张 琳,谢艳军.基于Image-Pro Plus软件骨料比表面积测量[J].混凝土,2017(9):157-160.
[23]徐 飞.粗骨料颗粒形状评定方法的研究[J].扬州大学学报(自然科学版),2002(2):61-63.
PDF(3563 KB)

Accesses

Citation

Detail

Sections
Recommended

/