Rapid Measurement of Advection-Dispersion-Adsorption Parameters of Heavy Metals by Soil Column Test

YANG Kong-li, ZHAN Liang-tong, CHEN Cheng, XIE Hai-jian

Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (6) : 120-126.

PDF(5143 KB)
PDF(5143 KB)
Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (6) : 120-126. DOI: 10.11988/ckyyb.20190054
ROCK-SOIL ENGINEERING

Rapid Measurement of Advection-Dispersion-Adsorption Parameters of Heavy Metals by Soil Column Test

  • YANG Kong-li1, ZHAN Liang-tong1, CHEN Cheng1,2, XIE Hai-jian1,3
Author information +
History +

Abstract

The advection-dispersion-adsorption parameters of heavy metals are crucial for evaluating the service performance of barrier systems. Efficient and reliable method to test these parameters systematically is still in lack at present. In order to obtain the advection-dispersion-adsorption parameters of heavy metal ions with less experimental quantities in a shorter test time, the soil column test using Pb2+ as a representative heavy metal ion was carried out in soil-bentonite. Results showed that the retardation factor of Pb2+ decreased from 13 to 11 when the flow rate increased from 0 m/s to 1.59×10-7 m/s, which was consistent with the law that the larger the flow rate, the smaller the retardation factor. The advection-dispersion-adsorption parameters of Pb2+ obtained by this method were in good agreement with the typical values reported in previous literature, which proved the validity of this method. This method reduced the number of tests, improved the efficiency of parameter acquisition by which the test results were also more reliable by means of single parameter decoupling.

Key words

heavy metal / advection-dispersion-adsorption parameters / soil column test / soil-bentonite / barrier systems / single parameter

Cite this article

Download Citations
YANG Kong-li, ZHAN Liang-tong, CHEN Cheng, XIE Hai-jian. Rapid Measurement of Advection-Dispersion-Adsorption Parameters of Heavy Metals by Soil Column Test[J]. Journal of Changjiang River Scientific Research Institute. 2020, 37(6): 120-126 https://doi.org/10.11988/ckyyb.20190054

References

[1]KJELDSEN P, BARLAZ M A, ROOKER A P, et al. Present and Long-term Composition of MSW Landfill Leachate: A Review[J]. Critical Reviews in Environmental Science and Technology, 2002, 32(4): 297-336.
[2] 朱 伟, 舒 实, 王升位,等. 垃圾填埋场渗沥液击穿防渗系统的指示污染物研究[J]. 岩土工程学报, 2016, 38(4):619-626.
[3] 刘松玉, 詹良通, 胡黎明,等. 环境岩土工程研究进展[J].土工工程学报,2016,49(3):6-30.
[4] 陈云敏. 环境土工基本理论及工程应用[J]. 岩土工程学报, 2014, 36(1): 1-46.
[5] 谢海建,詹良通,陈云敏,等.我国四类衬垫系统防污性能的比较分析[J].土木工程学报,2011(7):133-141.
[6] DU Y J, SHEN S L, LIU S Y, et al. Contaminant Mitigating Performance of Chinese Standard Municipal Solid Waste Landfill Liner Systems[J]. Geotextiles & Geomembranes, 2009, 27(3): 232-239.
[7] 曾 兴. 黏土屏障重金属迁移离心模拟相似性及击穿时间评估方法[D].杭州: 浙江大学, 2015.
[8] 钟孝乐. 重金属在高岭土中对流-弥散参数的测试研究[D]. 杭州:浙江大学, 2013.
[9] SHACKELFORD C D, MEIER A, SAMPLE-LORD K. Limiting Membrane and Diffusion Behavior of a Geosynthetic Clay Liner[J]. Geotextiles & Geomembranes, 2016, 44(5): 707-718.
[10]YEO S S, SHACKELFORD C D, EVANS J C. Consolidation and Hydraulic Conductivity of Nine Model Soil-Bentonite Backfills[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2005, 131(10): 1189-1198.
[11]张文杰, 顾 晨, 楼晓红. 低固结压力下土-膨润土防渗墙填料渗透和弥散系数测试[J]. 岩土工程学报, 2017, 39(10):1915-1921.
[12]杨玉玲, 杜延军, 范日东,等. 膨润土系隔离墙材料渗透特性研究综述[J]. 岩土工程学报, 2015, 37(增刊2):210-216.
[13]曾 兴, 詹良通, 陈云敏. 低渗透性土柱对流-弥散迁移试验解析模拟边界适用性研究[J]. 岩土工程学报, 2017, 39(4):636-644.
[14]SAMPLE-LORD K M,SHACKELFORD C D.Solute Diffusion in Bentonite Pastes[J].Journal of Geotechnical & Geoenvironmental Engineering, 2016,142(8):04016033.
[15]张文杰, 楼晓红, 高佳雯. 高塌落度防渗墙填料扩散系数快速测定的透析试验[J]. 岩土力学, 2018,39(2):523-528.
[16]李 涛, 张志红, 唐保荣. 太湖疏浚底泥堆场黏土防渗层阻隔污染物的试验研究[J]. 岩土力学, 2012, 33(4): 993-998.
[17]刘兆鹏, 杜延军, 蒋宁俊,等. 基于半动态淋滤试验的水泥固化铅污染黏土溶出特性研究[J]. 岩土工程学报, 2013, 35(12):2212-2218.
[18]伍浩良, 刘兆鹏, 杜延军,等. 酸雨作用下含磷固化剂处理铅锌镉复合污染土的半动态浸出试验研究[J]. 岩土工程学报, 2017, 39(6):1058-1064.
[19]ROWE R K, BADV K. Chloride Migration through Clayey Silt Underlain by Fine Sand or Silt[J]. Journal of Geotechnical Engineering, 1996, 122(1): 60-68.
[20]DU Y J, HAYASHI S, LIU S Y. Experimental Study of Migration of Potassium Ion through a Two-layer Soil System[J]. Environmental Geology, 2005, 48(8): 1096-1106.
[21]李振泽, 陈云敏, 唐晓武,等. 污染物在黏土中的非线性弥散特性[J]. 浙江大学学报(工学版), 2010, 44(12):2337-2341.
[22]XI Y H, REN J, HU Z X. Laboratory Determination of Diffusion and Distribution Coefficients of Contaminants in Clay Soil[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 397-402.
[23]KIM J Y, EDIL T B, PARK J K. Effective Porosity and Seepage Velocity in Column Tests on Compacted Clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(12): 1135-1142.
[24]王誉泽. 防污屏障土质材料改性及服役寿命分析[D]. 杭州:浙江大学, 2014.
[25]龚 标. 利用短土柱测定黏性土等温吸附曲线的方法及应用[D].杭州:浙江大学, 2015.
[26]潘 倩. 土-膨润土竖向隔离墙力学行为及其对防污性能影响[D]. 杭州:浙江大学, 2016.
[27]DU Y J, HAYASHI S. A Study on Sorption Properties of Cd2+, on Ariake Clay for Evaluating Its Potential Use as a Landfill Barrier Material[J]. Applied Clay Science, 2006, 32(1):14-24.
[28]STUERMER M M, BOSCOV M E G, OLIVEIRA E, et al. Metal Retention Capacity of a Saprolitic Silty Soil Derived from Gneiss[J]. Journal of Geotechnical and Geoenvironmental Engineering, DOI: 10.1061/(ASCE)1090-0241(2008)134:4(509).
[29]CHALERMYANONT T, ARRYKUL S, CHAROENTHAISONG N. Potential Use of Lateritic and Marine Clay Soils as Landfill Liners to Retain Heavy Metals[J]. Waste Management, 2009, 29(1): 117-127.
[30]INTERNÒ G, LENTI V, FIDELIBUS C. Laboratory Experiments on Diffusion and Sorption of Heavy Metals in a Marine Clay[J]. Environmental Earth Sciences, 2014, 73(8):1-7.
[31]ROEHL K E, CZURDAK. Diffusion and Solid Speciation of Cd and Pb in Clay Liners[J]. Applied Clay Science, 1998, 12(5): 387-402.
[32]楼紫阳,赵由才,张 全.渗滤液处理处置技术及工程实例[M].北京:化学工业出版社,2007.
[33]王宝贞,王 琳.城市固体废物渗滤液处理与处理[M].北京:化学工业出版社,2005.
[34]谢海建. 成层介质污染物的运移机理及衬垫系统防污性能研究[D]. 杭州:浙江大学, 2008.
PDF(5143 KB)

Accesses

Citation

Detail

Sections
Recommended

/