Nonlinear Characteristics and Expression of Viscosity Coefficient of Coastal Soft Clay

LIU Su-mei, HU Hui-ying, LI Chun-guang, WANG Li

Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (2) : 119-125.

PDF(656 KB)
PDF(656 KB)
Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (2) : 119-125. DOI: 10.11988/ckyyb.20181066
ROCK SOIL ENGINEERING

Nonlinear Characteristics and Expression of Viscosity Coefficient of Coastal Soft Clay

  • LIU Su-mei1, HU Hui-ying1, LI Chun-guang2, WANG Li1
Author information +
History +

Abstract

Analysis on triaxial creep test data of coastal soft soil reveals that viscosity coefficient is not only related to time, but also to the deviatoric pressure and confining pressure of soil. The relation between strain rate and time is of perfect double logarithmic linear characteristics. Hence, viscosity coefficient is a power function of time. Sensitivity analysis of deviatoric pressure unveils that viscosity coefficient is linearly dependent on deviatoric pressure and exponentially on confining pressure. Last but not the least, the nonlinear relations between viscosity coefficient with time, deviatoric stress and confining pressure are established and applied to the direct shear creep test of coastal soft soil. The proposed expression is applicable to describe the variation of viscosity coefficient of soft soil with apparent nonlinear characteristics and high stress level along with time and stress. In addition, factors affecting the relevant parameters are also put forward. The research findings lay a foundation for building the nonlinear rheological model coastal soft soil

Key words

coastal soft clay / viscosity coefficient / triaxial creep / direct shear creep / nonlinear rheological model

Cite this article

Download Citations
LIU Su-mei, HU Hui-ying, LI Chun-guang, WANG Li. Nonlinear Characteristics and Expression of Viscosity Coefficient of Coastal Soft Clay[J]. Journal of Changjiang River Scientific Research Institute. 2020, 37(2): 119-125 https://doi.org/10.11988/ckyyb.20181066

References

[1] 陈晓平. 对“软黏土地基黏弹塑性比奥固结的数值分析”讨论的答复. 岩土工程学报, 2002, 24(2):264-265.
[2] 杨爱武, 张 艳. 不同初始固结度吹填土蠕变特性研究. 岩土工程学报, 2013, 35(增刊1):222-226.
[3] 王军保, 刘新荣, 郭建强,等. 盐岩蠕变特性及其非线性本构模型. 煤炭学报, 2014, 39(3):445-451.
[4] 杨爱武, 张兆杰, 孔令伟. 不同应力状态下软黏土蠕变特性试验研究. 岩土力学, 2014, 35(增刊2):53-60.
[5] 雷华阳, 贾亚芳, 李 肖. 滨海软土非线性蠕变特性的试验研究. 岩石力学与工程学报, 2013, 31(增刊1):2806-2816.
[6] 张兆楠. 两种软土非线性蠕变特性与长期强度试验研究. 长春:吉林大学, 2015.
[7] MA B, MUHUNTHAN B, XIE X. Mechanisms of Quasi-preconsolidation Stress Development in Clays: A Rheological Model. Soils & Foundations, 2014, 54(3): 439-450.
[8] LI R D, YUE J C, ZHU C Z, et al. A Nonlinear Viscoelastic Rheological Model of Soft Soil Based on Fractional Order Derivative. Applied Mechanics & Materials, 2013, 438-439: 1056-1059.
[9] PELEG K. A Rheological Model of Nonlinear Viscoplastic Solids. Journal of Rheology, 1983, 27(5):411-431.
[10]曹树刚, 边 金, 李 鹏. 岩石蠕变本构关系及改进的西原正夫模型. 岩石力学与工程学报, 2002, 21(5):632-634.
[11]尹光志, 王登科, 张东明,等. 含瓦斯煤岩三维蠕变特性及蠕变模型研究. 岩石力学与工程学报, 2008, 27(增刊1):2631-2636.
[12]陈 浩, 杨春和, 任伟中. 蠕动滑坡变形机制的理论分析与模型试验研究. 岩石力学与工程学报, 2008, 27(增刊2):2705-2711.
[13]徐卫亚, 杨圣奇, 褚卫江. 岩石非线性黏弹塑性流变模型(河海模型)及其应用. 岩石力学与工程学报, 2006, 26(3):641-646.
[14]宋 飞, 赵法锁, 卢全中. 石膏角砾岩流变特性及流变模型研究. 岩石力学与工程学报, 2005, 24(15):2659-2664.
[15]熊良宵, 杨林德. 硬脆岩的非线性粘弹塑性流变模型.同济大学学报(自然科学版), 2010, 38(2):188-193.
[16]杨爱武. 结构性吹填软土流变特性及其本构模型研究. 天津:天津大学, 2011.
[17]王松鹤. 黄土蠕变特性试验研究. 杨凌:西北农林科技大学, 2010.
[18]张先伟, 王常明. 结构性软土的黏滞系数. 岩土力学, 2011, 32(11):3276-3282.
PDF(656 KB)

Accesses

Citation

Detail

Sections
Recommended

/