Initial Yield Function about the Moistening Deformation of Undisturbed Loess

ZHANG Li-xin, DING Ye, REN Yong-zhong

Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (2) : 130-134.

PDF(1201 KB)
PDF(1201 KB)
Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (2) : 130-134. DOI: 10.11988/ckyyb.20181029
ROCK SOIL ENGINEERING

Initial Yield Function about the Moistening Deformation of Undisturbed Loess

  • ZHANG Li-xin1, DING Ye1, REN Yong-zhong2
Author information +
History +

Abstract

The stress-strain relation of undisturbed loess with varied initial moisture content was examined via conventional triaxial shear test and isotropic compression test. Shear test revealed that the critical state lines of undisturbed loess approximated to be straight lines which shifted along the q axis up and down horizontally with the variation of moisture content but do not pass through the coordinate origin of the p-q plane. Triaxial compression test demonstrated that the e-lnp curve of undisturbed loess was a broken line rather than a straight line, and the spherical stress at the fold point declined with the increase of initial moisture content. Under the hypothesis of ellipse yield locus, the initial yield function of undisturbed loess was acquired, according to which the initial yield stress and initial moisture content in different stress paths can be predicted. The present research lays a foundation for establishing the constitutive model of undisturbed loess during the process of moistening deformation.

Key words

undisturbed loess / moistening deformation / critical state line / collapsibility / constitutive model

Cite this article

Download Citations
ZHANG Li-xin, DING Ye, REN Yong-zhong. Initial Yield Function about the Moistening Deformation of Undisturbed Loess[J]. Journal of Changjiang River Scientific Research Institute. 2020, 37(2): 130-134 https://doi.org/10.11988/ckyyb.20181029

References

[1] 陈正汉, 周海清, FREDLUND D G. 非饱和土的非线性模型及其应用. 岩土工程学报, 1999, 21(5):603-608.
[2] 高登辉, 陈正汉, 郭 楠, 等. 干密度和基质吸力对重塑非饱和黄土变形与强度特性的影响. 岩石力学与工程学报, 2017, 36(3): 736-744.
[3] 陈存礼, 何军芳, 杨 鹏. 考虑结构性影响的原状黄土本构关系. 岩土力学, 2007, 28(11):2284-2290.
[4] 张 炜, 张苏民. 非饱和黄土地基的变形特性. 岩土工程学报, 1998, 20(4):101-104.
[5] 邵显显, 张虎元, 何东进, 等. 压实黄土非饱和增湿变形过程及其微观机制. 长江科学院院报, 2018,35(4):82-87.
[6] 武小鹏, 赵永虎, 徐安花, 等. 黄土湿陷性与其物理力学指标的关系及评价方法. 长江科学院院报, 2018, 35(6): 75-80.
[7] 李广信. 关于土的本构模型研究的若干问题. 岩土工程学报, 2009, 31(10):1636-1641.
[8] ROSCOE K H, SCHOFIELD A N, THURAIRAJAH A. Yielding of Clays in States Wetter than Critical. Geotechnique, 1963, 13(3):211-240.
[9] 沈珠江. 三种硬化理论的比较. 岩土力学, 1994, 15(2):13-19.
[10]陈正汉. 重塑非饱和黄土的变形、强度、屈服和水量变化特性. 岩土工程学报, 1999, 21(1):85-93.
[11]扈胜霞, 周云东, 陈正汉. 非饱和原状黄土强度特性的试验研究. 岩土力学, 2005, 26(4):660-663.
[12]LADE P V, DUNCAN J M Elasto-plastic Stress-Strain Theory for Cohesionless Soils. International Journal of Solids and Structures, 1977, 13(11): 1019-1035.
[13]魏汝龙. 正常压密粘土的本构定律. 岩土工程学报, 1981, 3(3):10-18.
PDF(1201 KB)

Accesses

Citation

Detail

Sections
Recommended

/