Actual Evapotranspiration in Jialing River Basin Based on Generalized Complementary Correlation: Spatio-temporal Distribution Characteristics and Influence Factors

ZHAO Yu-ming, QIU Xin-fa, XU Jin-qin, HUA Huan-huan

Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (1) : 37-43.

PDF(1657 KB)
PDF(1657 KB)
Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (1) : 37-43. DOI: 10.11988/ckyyb.20180799
WATER RESOURCES AND ENVIRONMENT

Actual Evapotranspiration in Jialing River Basin Based on Generalized Complementary Correlation: Spatio-temporal Distribution Characteristics and Influence Factors

  • ZHAO Yu-ming1, QIU Xin-fa2, XU Jin-qin2, HUA Huan-huan3
Author information +
History +

Abstract

The temporal and spatial distribution characteristics of actual evapotranspiration in Jialing River Basin was investigated using generalized complementary correlation model based on daily observation data of 13 meteorological stations from 1961 to 1979 and annual runoff data in the basin. The correlation between actual evapotranspiration and meteorological factors was examined according to Pearson’s correlation coefficient. Results demonstrated that: 1) the generalized complementary model is applicable to the Jialing River Basin with high accuracy, an average absolute error 6.79 mm and an average relative error merely 1.42 %. 2) In spatial scale, actual evapotranspiration was higher in the north and east of the basin, whereas lower in the south and west with the maximum reaching 649.86 mm found in Diebu County of Gansu Province, and the minimum 188.26 mm in Songpan County of Sichuan Province. A slow downward trend from 1961 to 2000 at a rate of -5.3 mm/10 a was found in the temporal distribution. 3) The correlation coefficient analysis showed that the decline of actual evapotranspiration was closely related to the decreasing supply of sunshine hours and daily range that gave rise to the reduction of radiation-energy item. On the contrary, the increase of daily minimum temperature, daily maximum temperature and actual vapor pressure and the decrease of 2 m wind speed contributing to the aerodynamics item decreasing eased the reduction rate of actual evapotranspiration. The generalized complementary correlation model was applied to the ETa of Jialing River Basin for the first time, with favorable estimation accuracy. The research findings offer scientific basis for the evaluation, planning, and sustainable development of water resources.

Key words

generalized complementarity correlation / actual evapotranspiration / temporal and spatial distribution / meteorological factor / coefficient of correlation / Jialing River Basin

Cite this article

Download Citations
ZHAO Yu-ming, QIU Xin-fa, XU Jin-qin, HUA Huan-huan. Actual Evapotranspiration in Jialing River Basin Based on Generalized Complementary Correlation: Spatio-temporal Distribution Characteristics and Influence Factors[J]. Journal of Changjiang River Scientific Research Institute. 2020, 37(1): 37-43 https://doi.org/10.11988/ckyyb.20180799

References

[1] SHUKLA J, MINTZ Y. Influence of Land-Surface Evapotranspiration on the Earth’s Climate[J]. Science, 1982, 215(4539): 1498.
[2] 吴 芳, 张新锋, 崔雪锋. 中国水资源利用特征及未来趋势分析[J]. 长江科学院院报, 2017, 34(1): 30-39.
[3] 刘 可, 杜灵通, 候 静, 等. 2000—2014年宁夏草地蒸散时空特征及演变规律[J]. 草业学报, 2018, 27(3): 1-12.
[4] PENMAN H L. Natural Evaporation from Open Water, Hare Soil and Grass[J]. Proceedings of the Royal Society of London, 1948, 193(1032): 120.
[5] 张 霞,李明星,马柱国.近30年全球干旱半干旱区的蒸散变化特征[J].大气科学,2018,42(2):251-267.
[6] NASH J E. Potential Evaporation and “The Complementary Relationship”[J]. Journal of Hydrology, 1989, 111(1): 1-7.
[7] BOUCHET R J. Evapotranspiration Reelle at Potentielle, Signification Climatique[J]. 1963, 62: 134-142.
[8] BRUTSAERT W, HAN S. An Advection-aridity Approach to Estimate Actual Regional Evapotranspiration[J]. Water Resources Research, 1979, 15(2): 443-450.
[9] MORTON F I, MORTON F I. Operational Estimates of Areal Evapotranspiration and Their Significance to the Science and Practice of Hydrology[J]. Journal of Hydrology, 1983, 66(1): 1-76.
[10]GRANGER R J, GRAY D M. Evaporation from Natural Nonsaturated Surfaces[J]. Journal of Hydrology, 1989, 111(1): 21-29.
[11]HAN S, HU H, TIAN F. A Nonlinear Function Approach for the Normalized Complementary Relationship Evaporation Model[J]. Hydrological Processes, 2012, 26(26): 3973-3981.
[12]BRUTSAERT W. A Generalized Complementary Principle with Physical Constraints for Land-surface Evaporation[J]. Water Resources Research, 2016, 51(10): 8087-8093.
[13]CRAGO R, SZILAGYI J, QUALLS R, et al. Rescaling the Complementary Relationship for Land Surface Evaporation[J]. Water Resources Research, 2016, 52(11): 8461-8471.
[14]SZILAGYI J,CRAGO R,QUALLS R. A Calibration-free Formulation of the Complementary Relationship of Evaporation for Continental-scale Hydrology[J]. Journal of Geophysical Research Atmospheres,2017,122(1):264-278.
[15]LIU X, LIU C, BRUTSAERT W. Regional Evaporation Estimates in the Eastern Monsoon Region of China: Assessment of a Nonlinear Formulation of the Complementary Principle[J]. Water Resources Research, 2016, 52(12): 9511-9521.
[16]ZHANG L, CHENG L, BRUTSAERT W. Estimation of Land Surface Evaporation Using a Generalized Nonlinear Complementary Relationship[J]. Journal of Geophysical Research Atmospheres, 2017, 122(3): 1475-1487.
[17]LIU X, LIU C, BRUTSAERT W. Investigation of a Generalized Nonlinear Form of the Complementary Principle for Evaporation Estimation[J]. Journal of Geophysical Research Atmospheres, 2018, 123(8): 3922-3942.
[18]毛红梅, 裴明胜. 近期人类活动对嘉陵江流域水沙量影响[J]. 水土保持学报, 2002, 16(5): 101-104.
[19]PRIESTLEY C H B, TAYLOR R J. On the Assessment of Surface Heat Flux and Evaporation Using Large-scale Parameters[J]. Monthly Weather Review, 2009, 100(2): 81-92.
[20]杨汉波, 杨大文, 雷志栋, 等. 蒸发互补关系的区域变异性[J]. 清华大学学报(自然科学版), 2008, 48(9): 1413-1416.
[21]FLINT A L, CHILDS S W. Use of the Priestley-Taylor Evaporation Equation for Soil Water Limited Conditions in a Small Forest Clearcut[J]. Agricultural and Forest Meteorology, 1991, 56: 247-260.
[22]曾 燕, 邱新法, 刘昌明. 黄河流域蒸散量分布式模拟[J]. 水科学进展, 2014, 25(5): 632-640.
[23]马婷婷, 邱新法, 曾 燕. 全国二级流域实际蒸散分布式模型[J]. 水土保持通报, 2016, 36(2):191-196.
[24]MANN H B. Nonparametric Tests against Rrend[J]. Econometrica, 1945, 13(3): 245-259.
[25]KENDALL M G. Rank Correlation Methods[J]. British Journal of Psychology, 1955, 25(1): 86-91.
[26]SHEPARD D. A Two-dimensional Interpolation Function for Irregularly-spaced Data[C]// Proceedings of the ACM National Conference. ACM, August 27-29,1968: 517-524.
[27]PEARSON K. Note on Regression and Inheritance in the Case of Two Parents[J]. Proceedings of the Royal Society of London, 2006, 58: 240-242.
[28]孙一萌, 陈 喜, 黄日超, 等. 气候及土地利用变化对嘉陵江流域实际蒸散发量的影响[J]. 水电能源科学, 2016,34(12): 33-36.
[29]谢今范, 韦小丽, 张晨琛, 等. 第二松花江流域实际蒸散发的时空变化特征和影响因素[J]. 生态学杂志, 2013, 32(12): 3336-3343.
PDF(1657 KB)

Accesses

Citation

Detail

Sections
Recommended

/