Predicting Arch Dam Displacement Using Twin Support Vector Machine Optimized by Artificial Immune Algorithm

CAO Yan-ming, JING De-quan, LIU Chun-gao

Journal of Changjiang River Scientific Research Institute ›› 2019, Vol. 36 ›› Issue (12) : 54-58.

PDF(1798 KB)
PDF(1798 KB)
Journal of Changjiang River Scientific Research Institute ›› 2019, Vol. 36 ›› Issue (12) : 54-58. DOI: 10.11988/ckyyb.20180639
ENGINEERING SAFETY AND DISASTER PREVENTION

Predicting Arch Dam Displacement Using Twin Support Vector Machine Optimized by Artificial Immune Algorithm

  • CAO Yan-ming1, JING De-quan1, LIU Chun-gao2
Author information +
History +

Abstract

In this paper the twin support vector machine optimized by immune algorithm is proposed to analyze the displacement of arch dam and predict the deformation of the dam. Compared with support vector machine, twin support vector machine greatly improves the calculation speed and the calculation efficiency in batch repetitive calculation. Considering the effect of parameters on the fitting results, the artificial immune algorithm is incorporated in the twin support vector machine to optimize the parameters. Artificial immune algorithm retains a certain number of better solutions based on the genetic algorithm and improves the search efficiency of the algorithm. Engineering example analysis shows that parameters have great influence on the results of the twin support vector machine. After searching the optimal parameters by using artificial immune algorithm, the twin support vector machine can better fit the deformation data of the dam. The prediction result meets requirements, and the maximum error is merely 1 mm.

Key words

prediction of arch dam displacement / twin support vector machine / artificial immune algorithm / calculation efficiency / engineering precision

Cite this article

Download Citations
CAO Yan-ming, JING De-quan, LIU Chun-gao. Predicting Arch Dam Displacement Using Twin Support Vector Machine Optimized by Artificial Immune Algorithm[J]. Journal of Changjiang River Scientific Research Institute. 2019, 36(12): 54-58 https://doi.org/10.11988/ckyyb.20180639

References

[1] 张 冲, 王仁坤,汤雪娟. 溪洛渡特高拱坝蓄水初期工作状态评价[J] .水利学报, 2016,47(1): 85-93.
[2] 李占超, 何建栋, 黄浩浩,等. 施工期混凝土拱坝变形安全监控模型研究[J] .水力发电, 2011,37(4): 95-98.
[3] REN Q W, LI Q, JIANG Y Z,et al.Theory and Methods of Global Stability Analysis For High Arch Dam[J] .Science China-Technological Sciences, 2011,54(Sup.1): 9-17.
[4] 段庆伟, 耿克勤, 吴永平,等. 小湾拱坝变形承载力及整体安全度评价与分析[J] .岩土力学, 2008, 29(增刊1): 19-24.
[5] 吴中如, 顾冲时, 苏怀智,等.水工结构工程分析计算方法回眸与发展[J] .河海大学学报(自然科学版), 2015,43(5): 395-405.
[6] WANG W M, DING J X, WANG G J,et al.Stability Analysis of the Temperature Cracks in Xiaowan Arch Dam[J] .Science China-Technological Sciences, 2011,54(3): 547-555.
[7] 秦 栋. 基于面板数据格式的特高拱坝变形性态分区方法[J] .水电能源科学, 2016,34(10): 40-43.
[8] 俞艳玲, 郑东健, 俞 扬, 等. 改进的非等间距灰色模型在大坝位移预测中的应用[J] . 长江科学院院报, 2017,34(3):54-56,61.
[9] LEGER P, LECLERC M.Hydrostatic,Temperature,Time-displacement Model for Concrete Dams[J] .Journal of Engineering Mechanics-ASCE,2007,133(3):267-277.
[10] WANG X, FAN Q, XU C, et al. Dam Deformation Prediction Based on Wavelet Transform and Support Vector Machine[J] . Geomatics & Information Science of Wuhan University, 2008, 25(1):73-76.
[11] 张学工. 关于统计学习理论与支持向量机[J] .自动化学报, 2000,26(1): 32-42.
[12] 祁亨年. 支持向量机及其应用研究综述[J] .计算机工程, 2004,30(10): 6-9.
[13] TANVEER M. Linear Programming Twin Support Vector Regression[J] . Filomat, 2017,31(7): 2123-2142.
[14] KHEMCHANDANI R, GOYAL K, CHANDRA S. TWSVR: Regression via Twin Support Vector Machine[J] . Neural Networks, 2016,74: 14-21.
[15] 李茂军, 罗 安,童调生. 人工免疫算法及其应用研究[J] .控制理论与应用, 2004,21(2): 153-157.
[16] DASGUPTA D. Advances in Artificial Immune Systems[J] . IEEE Computational Intelligence Magazine, 2006,1(4): 40-49.
[17] HUNT J E, COOKE D E. Learning Using an Artificial Immune System[J] . Journal of Network and Computer Applications, 1996,19(2): 189-212.
[18] JAYADEVA R. KHEMCHANDANI R, CHANDRA S. Twin Support Vector Machines for Pattern Classification[J] . IEEE Transactions on Pattern Analysis & Machine Intelligence, 2007, 29(5): 905-910.
[19] PENG X.TSVR: An Efficient Twin Support Vector Machine for Regression[J] . Neural Networks, 2010, 23(3): 365-372.
PDF(1798 KB)

Accesses

Citation

Detail

Sections
Recommended

/