A Prediction Method for Abutment Slope Deformation Based on IPSO-LSSVM Model Integrating Ensemble Empirical Mode Decomposition and Sample Entropy

LI Qiao, JU Neng-pan, HUANG Jian, WANG Chang-ming, LAI Ruo-fan, JIAN Xin-lei

Journal of Changjiang River Scientific Research Institute ›› 2019, Vol. 36 ›› Issue (12) : 47-53.

PDF(2182 KB)
PDF(2182 KB)
Journal of Changjiang River Scientific Research Institute ›› 2019, Vol. 36 ›› Issue (12) : 47-53. DOI: 10.11988/ckyyb.20180545
ENGINEERING SAFETY AND DISASTER PREVENTION

A Prediction Method for Abutment Slope Deformation Based on IPSO-LSSVM Model Integrating Ensemble Empirical Mode Decomposition and Sample Entropy

  • LI Qiao, JU Neng-pan, HUANG Jian, WANG Chang-ming, LAI Ruo-fan, JIAN Xin-lei
Author information +
History +

Abstract

The deformation of abutment slope is difficult to be estimated as it is uncertain and random under the influence of many factors. We present a prediction model for the abutment slope deformation by coupling ensemble empirical mode decomposition (EEMD), sample entropy (SE), improved particle swarm optimization (IPSO), and least square support vector machine (LSSVM). First of all, the time series of abutment slope deformation is decomposed by the EEMD into several subsequences with different complexity. Secondly, the complexity of each subsequence is determined using SE, and similar subsequences are merged to reduce the computational scale. Subsequently, the prediction model based on IPSO-LSSVM is established for each newly merged subsequence. The final prediction value of abutment slope deformation is obtained through superimposing and reconstructing each component. The model is applied to predicting the abutment slope deformation on the left bank of Miaowei Hydropower Station on Lancang River as a case study, and the result is compared with those of BPNN, RBFNN, LSSVM, EEMD-SE-LSSVM and EEMD-SE-PSO-LSSVM models. The comparison demonstrates that the present model has higher accuracy and better stability than the other neural network models.

Key words

abutment slope / deformation prediction / ensemble empirical mode decomposition (EEMD) / sample entropy (SE) / improved particle swarm optimization (IPSO) / LSSVM

Cite this article

Download Citations
LI Qiao, JU Neng-pan, HUANG Jian, WANG Chang-ming, LAI Ruo-fan, JIAN Xin-lei. A Prediction Method for Abutment Slope Deformation Based on IPSO-LSSVM Model Integrating Ensemble Empirical Mode Decomposition and Sample Entropy[J]. Journal of Changjiang River Scientific Research Institute. 2019, 36(12): 47-53 https://doi.org/10.11988/ckyyb.20180545

References

[1] 周建平. 中国典型工程边坡: 水利水电工程卷[M] .北京:中国水利水电出版社, 2008.
[2] 李越超. 基于QPSO-LSSVM的边坡变形预测[J] . 山地学报, 2015, 31(3): 374-378.
[3] 杜太亮, 钟坚敏, 张永兴. 基于ANFIS模型的边坡变形预测办法[J] . 土木建筑与环境工程, 2005, 27(4): 55-58.
[4] 李捷斌, 孔令杰. 基于Kalman滤波的BP神经网络方法在大坝变形预测中的应用[J] . 大地测量与地球动力学, 2009, 29(4): 124-126.
[5] 李骅锦, 许 强, 王思澄, 等. WA-BT-ELM耦合模型在黄土滑坡位移预测中的应用[J] . 长江科学院院报, 2017, 34(9): 63-69.
[6] 任 超, 梁月吉, 庞光锋, 等. 经验模态分解和遗传小波神经网络法用于边坡变形预测[J] . 测绘科学技术学报, 2014, 31(6): 551-555.
[7] 邓冬梅, 梁 烨, 王亮清, 等. 基于时间序列EEMD重构的滑坡位移PSO-SVR预测方法:以三峡库区滑坡为例[J] . 岩土力学, 2017, 38(12): 1001-1010.
[8] 陶望雄, 张 杰, 王 青, 等. 泾河张家山站水沙多时间尺度分析及输沙量模拟[J] .长江科学院院报, 2016, 33(2): 10-13.
[9] WANG T, ZHANG M C, YU Q H, et al. Comparing the Application of EMD and EEMD on Time-frequency Analysis of Seismic Signal[J] . Journal of Applied Geophysics, 2012, 83(6): 29-34.
[10] 茆美琴, 龚文剑, 张榴晨, 等. 基于 EEMD-SVM 方法的光伏电站短期出力预测[J] . 中国电机工程学报, 2013, 33(34): 17-24.
[11] WU Z H, HUANG N E. Ensemble Empirical Mode Decomposition: A Noise-assisted Data Analysis Method[J] . Advances in Adaptive Data Analysis, 2009, 1(1): 1-41.
[12] 王 新, 孟玲玲. 基于EEMD-LSSVM的超短期负荷预测[J] . 电力系统保护与控制, 2015, 43(1) :61-67.
[13] JIANG H K, LI C L, LI H X. An Improved EEMD with Multiwavelet Packet for Rotating Machinery Multi-fault Diagnosis[J] . Mechanical Systems & Signal Processing, 2013, 36(2) :225-239.
[14] RICHMAN J S, MOORMAN J R, Physiological Time Series Analysis Using Approximate Entropy and Sample Entropy[J] . American Journal of Physiology-Heart and Circulatory Physiology, 2000, 278: 2039-2049.
[15] WIDODO A, SHIM M, CAESARENDRA W, et al. Intelligent Prognostics for Battery Health Monitoring Based on Sample Entropy[J] . Expert Systems with Applications, 2011, 38(9): 11763-11769.
[16] 张学清, 梁 军, 张 熙, 等. 基于样本熵和极端学习机的超短期风电功率组合预测模型[J] . 中国电机工程学报, 2013, 33(25): 33-40.
[17] PINCUS S M. Assessing Serial Irregularity and Its Implications for Health[J] . Annals New York Academy of Sciences, 2002, 954: 245-267.
[18] 孟锦根. 基于PSO-LSSVM的干旱区中长期降水预测模型研究[J] .长江科学院院报, 2016, 33(10): 36-40.
[19] ZHU X, MA S Q, XU Q, et al. A WD-GA-LSSVM Model for Rainfall-triggered Landslide Displacement Prediction[J] . Journal of Mountain Science, 2018, 15(1): 156-166.
[20] 张 俊, 殷坤龙, 王佳佳, 等. 基于时间序列与 PSO-SVR耦合模型的白水河滑坡位移预测研究[J] . 岩石力学与工程学报, 2015, 34(2): 382-391.
[21] 游坤骏. 澜沧江苗尾水电站右坝肩边坡倾倒岩体开挖变形响应及稳定性分析[D] .四川:成都理工大学, 2014.
PDF(2182 KB)

Accesses

Citation

Detail

Sections
Recommended

/