Field survey on the left abutment slope of a hydropower station on the Lancang River reveals a type of special rock mass with fragmented structure and significant loosening deformation synchronously. On this basis, we put forward the concept of cataclastic loose rock mass. Study on its development characteristics unveils that the cataclastic loose rock mass features with granular structure, cataclastic structure, and block structure from the slope surface to the interior, and its development depth corresponds well to the extremely-strong unloading zone. In view of this, we put forward the division standard: the depth of the rock mass with granular structure, cataclastic structure and block structure is regarded as the development depth of cataclastic rock mass, while the depth of the extremely-strong unloading zone is the depth of its unloading zone; and the average value of the two is determined as the ultimate development depth. In order to prove that the result acquired by this standard can be used to guide the excavation of the slope, we performed simulations using UDEC. Results demonstrated that after the excavation of the slope, besides the dangerous rock in a small scale near the excavation face, the overall deformation is small, and the stability is good. Therefore, we recommend to excavating the slope along the division depth of the cataclastic rock mass, and the excavation slope ratio above and below 2 880 m height is 1∶1.5 and 1∶1, respectively.The results prove that the division of cataclastic loose rock mass provides reasonable reference for the excavation depth in such special slope rock mass.
Key words
cataclastic loose rock mass /
development characteristics /
standards of division /
numerical simulation /
response of excavation deformation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 李建荣.如美水电站边坡碎裂岩体成因机理及边坡岩体质量分级研究[D].宜昌: 三峡大学,2013.
[2] 赵伟华,黄润秋,赵建军,等.强震条件下碎裂岩体崩塌机理及崩塌后壁对堆积体稳定性影响研究[J].工程地质学报, 2011, 19(2):205-213.
[3] 朱 玮,许劲松.碎裂结构围岩破坏模式的模糊数学分析[J].大连理工大学学报, 1990,30(2):87-94.
[4] WANG C, TANNANT D D, LILLY P A. Numerical Analysis of the Stability of Heavily Jointed Rock Slopes Using PFC2D[J]. International Journal of Rock Mechanics and Mining Sciences, 2003,40(3): 415-424.
[5] 邹 俊. 高寒山区深切河谷碎裂松动岩体发育特征及稳定性研究[D]. 成都:成都理工大学,2016.
[6] 袁 勇. 澜沧江某水电站中坝址区左岸碎裂松动岩体成因机制及稳定性分析[D]. 成都:成都理工大学,2016.
[7] 黄 鹏. 澜沧江某水电站右岸碎裂松动岩体工程特性及岸坡稳定性研究[D]. 成都:成都理工大学,2016.
[8] 黄 鹏,乔 鹏. 高原寒区碎裂松动岩发育特征研究[J]. 人民珠江, 2018,39(1):13-21.
[9] 苟晓峰,邓 辉,邹 俊. 某水电站碎裂松动岩体形成机制及稳定性分析[J]. 路基工程, 2017(6):169-173.
[10]瞿生军. 西藏如美水电站右岸坝肩边坡岩土质量及变形破坏模式研究[D]. 成都:成都理工大学,2017.
[11]蔺 冰. 澜沧江如美水电站左岸坝肩边坡开挖响应及稳定性评价[D]. 成都:成都理工大学,2017.
[12]陈本龙. 如美水电站强风化、强卸荷高边坡稳定性研究[D]. 北京:清华大学,2013.
[13]谷德振. 岩体工程地质力学基础[M]. 北京:科学出版社,1983.
[14]GB 50287—2016, 水力发电工程地质勘察规范[S].北京:中国计划出版社,2006.