In view of the inferior anti-scouring performance of closure gap of sea dyke in silt soft soil beach, we established the basic hydraulic calculation equation for the closure gap of sea dyke based on hydraulics theory and water balance principle. It is a nonlinear ordinary differential equation with precise analytical solution hardly obtained under normal condition. We can firstly obtain the numerical solution using the classic four-order Runge-Kutta method and MATLAB numerical software. In subsequence, we employed the sine function to fit the variation of the ocean tide position, and the quadratic function to fit the relation between storage capacity of closure area and water level. In association with numerical equivalent analysis and calculation experiences, we present the approximate analytic algorithm between the maximum water level difference and the width of closure gap. Engineering case study demonstrated that the numerical algorithm presented in this article meets practical application requirements.
Key words
closure gap of sea dike /
water balance /
Runge-Kutta method /
width of closure gap /
maximum water level difference
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 吴继伟. 围海工程堵口水力计算软件的开发与应用. 南京:河海大学,2003.
[2] 赵庚润, 吴 卫, 刘 桦. 龙口垂向二维流场数值模拟. 力学季刊, 2009, 30(2): 250-256.
[3] 胡志根,孟德乾,黄天润,等. 单戗堤立堵截流龙口的水力特性试验研究. 水利学报,2011, 42(4):414-418.
[4] 杨 磊, 郑 静, 方勇生,等. 宽戗堤截流龙口水力特性研究. 水利水电科技进展, 2011, 31(3): 60-64.
[5] 黄朝煊, 王正中, 刘铨鸿. 基于Runge-Kutta法和外推法的水库围区调洪演算. 人民黄河,2011,33(7):42-44.
[6] SL 389—2008,滩涂治理工程规范.北京:中国水利水电出版社, 2008.
[7] GB/T 51015—2014,海堤工程设计规范. 北京:中国计划出版社,2014.
[8] 王沫然. MATLAB与科学计算.2版. 北京:电子工业出版社,2011.
[9] 邓建中,刘之行.计算方法. 西安:西安交通大学出版社,2000.
[10] SL 265—2016,水闸设计规范.北京:中国水利电力出版社,2016.
[11] 中国水利学会围涂开发专业委员会. 中国围海工程. 北京:中国水利水电出版社,2000.