Back Propagation (BP) neural network has been widely used to establish monitoring models in analyzing dam deformation data. Nevertheless, when optimizing the BP neural network parameters, Ant Colony Optimization (ACO) algorithm converges slowly in the beginning due to completely random search. In the present study, a dam deformation monitoring model combining genetic ACO, BP, and Markov Chain (MC) is built to tackle this problem. First of all, Genetic Algorithm (GA) which has remarkable ability of global search is introduced to help guide the initial distribution of pheromone, and the optimal solution is obtained by the positive feedback of ACO to train BP neural network to get the predicted values of dam deformation. Since the advantages of the two algorithms are complementary, this improvement greatly reduces the time taken in the initial stage of optimization and avoids falling into the local optimum. Furthermore, to improve the prediction accuracy, MC is employed to correct residual errors of the prediction results. Engineering application case manifests that the model is of good ability of fitting and prediction with fast searching speed in parameter optimization.
Key words
monitoring model /
dam deformation /
ant colony algorithm /
BP neural network /
genetic algorithm /
Markov chain /
prediction accuracy
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 吴中如.水工建筑物安全监控理论及其应用[M].北京:高等教育出版社,2003.
[2] SU Huai-zhi, HU Jiang, WU Zhong-ru. A Study of Safety Evaluation and Early-warning Method for Dam Global Behavior[J]. Structural Health Monitoring, 2012, 11(3): 269-279.
[3] 于 鹏,顾冲时.大坝安全监测的组合预测模型[J].人民黄河,2006,28(1):67-68,72.
[4] 吴中如,陈 波.大坝变形监控模型发展回眸[J].现代测绘,2016,39(5):1-3,8.
[5] 吴云芳,李珍照.改进的BP神经网络模型在大坝安全监测预报中的应用[J].水电站设计,2002,18(2):21-24.
[6] 牛景太,魏博文.基于蚁群优化神经网络的混凝土坝位移安全监控模型[J].甘肃水利水电技术,2012,48(7):39-41.
[7] 陈 旭.基于神经网络的电力系统短期负荷预测研究[D].武汉:华中科技大学,2015.
[8] 龙 浩,高 睿,孔德新,等.基于BP神经网络-马尔科夫链模型的隧道围岩位移预测[J].长江科学院院报,2013,30(3):40-43,55.
[9] 苏怀智,吴中如,温志萍,等.遗传算法在大坝安全监控神经网络预报模型建立中的应用[J].水利学报,2001,32(8):44-48.
[10]江祥奎,汪友明.基于蚁群遗传算法的BP神经网络摄像机标定[J].机械与电子,2013(12):60-62.
[11]刘 澍.基于改进蚁群算法与神经网络的调制识别研究[D].武汉:华中科技大学,2009.
[12]杜传阳,郑东健,张 毅,等.基于动态SVM-MC的大坝变形监测模型及应用[J].水电能源科学,2015,33(1):71-74.