A Binary Harmony Search Particle Swarm Optimization Algorithm to Solve Unit Commitment Problem in Economic Running of Power House

GAO Xin-wen, ZHOU Jian-zhong, XIAO Xiao-gang, ZHANG Sheng, MO Li, JIANG Zhi-qiang, FENG Zhong-kai

Journal of Changjiang River Scientific Research Institute ›› 2018, Vol. 35 ›› Issue (11) : 133-139.

PDF(5397 KB)
PDF(5397 KB)
Journal of Changjiang River Scientific Research Institute ›› 2018, Vol. 35 ›› Issue (11) : 133-139. DOI: 10.11988/ckyyb.20171385
WATER CONSERVANCY ECONOMICS

A Binary Harmony Search Particle Swarm Optimization Algorithm to Solve Unit Commitment Problem in Economic Running of Power House

  • GAO Xin-wen1, ZHOU Jian-zhong1, XIAO Xiao-gang2, ZHANG Sheng2, MO Li1, JIANG Zhi-qiang1, FENG Zhong-kai1
Author information +
History +

Abstract

Unit commitment is a typical issue involving large-scale complicated nonlinear optimization. The difficulty of solving unit commitment increases nonlinearly with the increase of system scale. Effectively solving this problem has always been a hotspot and difficulty in power system research. In this paper, a Binary Harmony Search Particle Swarm Optimization (BHSPSO) algorithm is proposed for unit commitment problem. Firstly, the information sharing mechanism of particle swarm optimization is incorporated into the process of learning the harmony memory of the harmony search algorithm. And then the heuristic intelligent strategy is used to deal with the complex constraints of the time series. The spinning reserve constraints are repaired according to the priority of the unit, and an "on-off-on" repair strategy is designed to deal with the constraints of minimum power-off time and power-on time, effectively improving the quality of the results obtained. The BHSPSO algorithm is applied to standard calculation examples of six systems with 10, 20, 40, 60, 80 and 100 units. The simulation results show that the proposed algorithm has advantages of simplicity, fast convergence and strong robustness. This research offers a new approach for efficient solution of unit commitment optimization problem.

Key words

economic running of power house / unit commitment / binary harmony search / particle swarm optimization / repair strategy

Cite this article

Download Citations
GAO Xin-wen, ZHOU Jian-zhong, XIAO Xiao-gang, ZHANG Sheng, MO Li, JIANG Zhi-qiang, FENG Zhong-kai. A Binary Harmony Search Particle Swarm Optimization Algorithm to Solve Unit Commitment Problem in Economic Running of Power House[J]. Journal of Changjiang River Scientific Research Institute. 2018, 35(11): 133-139 https://doi.org/10.11988/ckyyb.20171385

References

[1] 陈皓勇, 王锡凡. 机组组合问题的优化方法综述[J]. 电力系统自动化, 1999,(4):51-56.
[2] 赵波, 曹一家. 电力系统机组组合问题的改进粒子群优化算法[J]. 电网技术, 2004, 28(21):6-10.
[3] SNYDER W L, POWELL H D, RAYBURN J C.Dynamic Programming Approach to Unit Commitment[J]. IEEE Transactions on Power Systems, 1987, 2(2):339-348.
[4] CARRION M, ARROYO J M.A Computationally Efficient Mixed-integer Linear Formulation for the Thermal Unit Commitment Problem[J]. IEEE Transactions on Power Systems, 2006, 21(3):1371-1378.
[5] ONGSAKUL W, PETCHARAKS N.Unit Commitment by Enhanced Adaptive Lagrangian Relaxation[J]. IEEE Transactions on Power Systems, 2004, 19(1):620-628.
[6] KUMAR V S, MOHAN M R.Solution to Security Constrained Unit Commitment Problem Using Genetic Algorithm[J]. International Journal of Electrical Power & Energy Systems, 2010, 32(2):117-125.
[7] 陈海良, 郭瑞鹏. 基于改进离散粒子群算法的电力系统机组组合问题[J]. 电网技术, 2011, 35(12):94-99.
[8] 夏澍, 张建华, 刘自发,等. 基于二进制自适应微分进化算法的机组组合问题[J]. 电网技术, 2010(4):110-114.
[9] ROY P K.Solution of Unit Commitment Problem Using Gravitational Search Algorithm[J]. International Journal of Electrical Power & Energy Systems, 2013, 53(4):85-94.
[10] 陈皓勇, 王锡凡. 机组组合问题的优化方法综述[J]. 电力系统自动化, 1999,(5):51-56.
[11] ZONG W G, KIM J H, LOGANATHAN G V.A New Heuristic Optimization Algorithm: Harmony Search[J]. Simulation Transactions of the Society for Modeling & Simulation International, 2001, 76(2):60-68.
[12] MANJARRES D, LANDA-TORRES I, GIL-LOPEZ S, et al. A Survey on Applications of the Harmony Search Algorithm[J]. Engineering Applications of Artificial Intelligence, 2013, 26(8):1818-1831.
[13] ZOU D, GAO L, LI S, et al. Solving 0-1 Knapsack Problem by a Novel Global Harmony Search Algorithm[J]. Applied Soft Computing, 2011, 11(2):1556-1564.
[14] WANG L, YANG R, XU Y, et al. An Improved Adaptive Binary Harmony Search Algorithm[J]. Information Sciences, 2013, 232(5):58-87.
[15] OMRAN M G H, MAHDAVI M. Global-best Harmony Search[J]. Applied Mathematics & Computation, 2008, 198(2):643-656.
[16] 刘建华. 粒子群算法的基本理论及其改进研究[D]. 长沙:中南大学, 2009.
[17] JI B, YUAN X, CHEN Z, et al. Improved Gravitational Search Algorithm for Unit Commitment Considering Uncertainty of Wind Power[J]. Energy, 2014, 67(2):52-62.
[18] YUAN X, JI B, ZHANG S, et al. A New Approach for Unit Commitment Problem via Binary Gravitational Search Algorithm[J]. Applied Soft Computing, 2014, 22(5):249-260.
[19] MAHDAVI M, FESANGHARY M, DAMANGIR E.An Improved Harmony Search Algorithm for Solving Optimization Problems[J]. Applied Mathematics & Computation, 2007, 188(2):1567-1579.
[20] JEONG Y W, PARK J B, JANG S H, et al. A New Quantum-Inspired Binary PSO: Application to Unit Commitment Problems for Power Systems[J]. IEEE Transactions on Power Systems, 2010, 25(3):1486-1495.
[21] CHUNG C Y, YU H, WONG K P.An Advanced Quantum-Inspired Evolutionary Algorithm for Unit Commitment[J]. IEEE Transactions on Power Systems, 2011, 26(2):847-854.
PDF(5397 KB)

Accesses

Citation

Detail

Sections
Recommended

/