Deformation Monitoring of Shaft Lining in Weakly Consolidated Strata

LÜ Xian-zhou, WANG Wei-ming, JIA Hai-bin, PAN Ge-lin, ZHAO Zeng-hui

Journal of Changjiang River Scientific Research Institute ›› 2018, Vol. 35 ›› Issue (3) : 122-128.

PDF(4784 KB)
PDF(4784 KB)
Journal of Changjiang River Scientific Research Institute ›› 2018, Vol. 35 ›› Issue (3) : 122-128. DOI: 10.11988/ckyyb.20171234
TESTS AND MONITORING IN GEOTECHNICAL ENGINEERING

Deformation Monitoring of Shaft Lining in Weakly Consolidated Strata

  • LÜ Xian-zhou1, WANG Wei-ming 1, JIA Hai-bin2, PAN Ge-lin 1, ZHAO Zeng-hui3,4
Author information +
History +

Abstract

Shaft lining in thick weakly consolidated strata is featured with large deformation and repeated damage after repair. Based on the concrete strength failure criterion under biaxial compression and analytical solution for spatially axisymmetric problem of a thick-walled cylinder, we obtained the limit value of damage of the shaft lining in Xinjulong coal mine. We selected three formations to carry out monitoring by a multi-layer automatic deformation monitoring system for the auxiliary shaft in Xinjulong coal mine, and evaluated the status of the lining. Results show that the deformation of the shaft lining under the condition of ultimate failure is 2.369 mm. The shaft lining located in the border of the bottom aquifer and the bedrock subjects to the most severe deformation, about 82.5% of the deformation limit. The shaft lining deformation increment fluctuates in a certain range belonging to elastic deformation. Finally, we inversed the stress state according the deformation value of the shaft lining. The obtained value of additional stress is lower than the ultimate compressive strength. Long-term project practice shows that the deformation monitoring results could reflect the real stress condition of the shaft lining. Moreover, the monitoring system could realize real-time dynamic evaluation of the shaft lining status.

Key words

weakly cemented strata / shaft lining / deformation / monitoring system / condition evaluation

Cite this article

Download Citations
LÜ Xian-zhou, WANG Wei-ming, JIA Hai-bin, PAN Ge-lin, ZHAO Zeng-hui. Deformation Monitoring of Shaft Lining in Weakly Consolidated Strata[J]. Journal of Changjiang River Scientific Research Institute. 2018, 35(3): 122-128 https://doi.org/10.11988/ckyyb.20171234

References

[1] 孙 闯,徐乃忠,刘义新,等. 基于双因素时间函数的松散地层条件下地表点动态沉降预计[J]. 岩土力学,2017,38(3):821-826.
[2] 张文泉,董世卓,张贵彬,等. 巨厚新近系松散地层结构特征研究及其应用[J]. 煤炭技术,2016,35(4):132-134.
[3] 李德海,许国胜,余华中. 厚松散层煤层开采地表动态移动变形特征研究[J]. 煤炭科学技术,2014,42(7):103-106.
[4] 刘环宇,陈卫忠,王争鸣. 兖州矿区立井井筒破坏机制的理论分析[J]. 岩石力学与工程学报,2007,26(增1):2620-2626.
[5] 张丁丁. 深厚松散层底部含水层渗流与变形试验研究[D]. 西安:西安科技大学,2013
[6] 张文泉,张永双,席京德,等. 煤矿立井井壁破裂的机制及防治措施[J]. 中国地质灾害与防治学报,2001,12(4):13-17.
[7] 倪兴华,隋旺华,官云章,等. 我国煤矿立井井壁破裂概况[M]. 北京:中国矿业大学出版社,2005.
[8] 杨维好. 十年来中国冻结法凿井技术的发展与展望[C]∥中国煤炭学会成立五十周年高层学术论坛论文集. 北京:中国煤炭学会,2012:1-7.
[9] 刘环宇,李 晓,曾钱帮,等. 兖州矿区立井井筒非采动破裂的非线性预测与判别方法[J]. 工程地质学报,2005,13(2):231-235.
[10]刘环宇,王思敬,曾钱帮,等. 基于模糊神经网络兖州矿区立井井筒非采动破裂的判别[J]. 岩土工程学报,2005,27(10):1237-1240.
[11]邵良杉,张 宇. 煤矿立井井筒非采动破裂预测[J]. 煤炭学报,2009,34(2):184-186.
[12]袁志刚,王宏图,胡国忠,等. 立井井筒非采动破裂的遗传-支持向量机预测模型[J]. 煤炭学报,2011,36(3):393-397.
[13]张向东,韩云瑞,刘世君,等. 矿山立井井壁的变形预测模型[J]. 辽宁工程技术大学学报(自然科学版),2014,33(8):1070-1073.
[14]许延春,高玉兵,李江华,等. 煤矿井筒安全状态评价体系改进及应用[J]. 煤炭科学技术,2016,44(10):95-101.
[15]陈祥福,申明亮,张 勇,等. 厚表土立井井壁破坏数值模拟研究[J]. 地下空间与工程学报,2010,6(5):926-931.
[16]王传武. 副井井筒的破坏机理和变形规律的研究[D]. 淮南:安徽理工大学,2015.
[17]张 辉. 宿南矿区钱营孜煤矿井壁变形机理研究[D]. 徐州:中国矿业大学,2016.
[18]CHAI J,LIU J,QIU B,et al. Detecting Deformations in Uncompacted Strata by Fiber Bragg Grating Sensors Incorporated into GFRP[J]. Tunneling and Underground Space Technology,2011,26(1):92-99.
[19]邱 标. 基于光纤光栅监测的厚松散层井筒变形预测研究[D]. 西安:西安科技大学,2009.
[20]刘化宽. 基于光纤光栅技术的立井井筒变形监测预警方法及系统研究[D]. 北京:北京交通大学,2014.
[21]黄明利,吴 彪,刘化宽,等. 基于光纤光栅技术的井壁监测预警系统研究[J]. 土木工程学报,2015,48(增1):424-428.
[22]王渭明,陈正大,徐乐年,等. 深立井多层位自动监测研究与应用[J]. 岩土力学,2003,24(增2):384-387,391.
[23]梁恒昌,周国庆,赵光思,等. 井壁破裂过程的应变实测特征分析[J]. 煤炭学报,2010,35(2):198-202.
[24]陈晓祥,杨维好. 新型单层冻结井壁水平极限承载特性试验研究[J]. 岩石力学与工程学报,2013,32(增2):3740-3748.
[25]张治国,徐 晨,宫剑飞. 隧道开挖对邻近桩基变形及承载能力影响的弹塑性解答[J]. 岩石力学与工程学报,2017,36(1):208-222.
[26]BARTON N. Shear Strengthcriteria for Rock, Rock Joints, Rockfill and Rock Masses: Problems and Some Solutions[J]. Journal of Rock Mechanics and Geotechnical Engineering,2013,5(4):249-261.
[27]李文婷,李树忱,冯现大,等. 基于莫尔-库仑准则的岩石峰后应变软化力学行为研究[J]. 岩石力学与工程学报,2011,30(7):1460-1466.
[28]许延春. 深部饱和黏土的力学性质特征[J]. 煤炭学报,2004,29(1):26-30.
[29]孟志强,纪洪广,彭 飞. 冻结法成井井壁在深厚表土段附加应力研究[J]. 煤炭学报,2013,38(2):204-208.
[30]周 扬,周国庆. 塑料板夹层双层井壁的轴对称变形分析[J]. 煤炭学报,2010,35(9):1470-1475.
[31]周 扬,周国庆,梁化强. 井壁约束内壁治理方法的力学分析[J]. 中国矿业大学学报,2009,38(2):197-202.
[32]刘环宇. 厚冲积层立井井筒破坏的发生机理及防治技术研究[D]. 南京:河海大学,2005.
[33]梁亚平, 王惠珍, 任兴民. 两端均布、轴向线性分布压力作用下厚壁圆筒空间轴对称问题的解析解[J]. 中国科学:物理学 力学 天文学, 2007, 37(5):684-688.
[34]贾海宾. 厚表土层立井井筒非采动变形破坏分析与预测[D]. 青岛:山东科技大学,2012.
PDF(4784 KB)

Accesses

Citation

Detail

Sections
Recommended

/