Evaluation of Mechanical and Thermal Properties of Low-heat Cement Binding System

JIANG Chun-meng, GONG Jing-wei, TANG Xin-jun

Journal of Changjiang River Scientific Research Institute ›› 2019, Vol. 36 ›› Issue (5) : 116-120,127.

PDF(1664 KB)
PDF(1664 KB)
Journal of Changjiang River Scientific Research Institute ›› 2019, Vol. 36 ›› Issue (5) : 116-120,127. DOI: 10.11988/ckyyb.20171207
HYDRAULIC STRUCTURE AND MATERIAL

Evaluation of Mechanical and Thermal Properties of Low-heat Cement Binding System

  • JIANG Chun-meng, GONG Jing-wei, TANG Xin-jun
Author information +
History +

Abstract

The mortar strength and hydration heat in different ages of low-heat cement material are investigated and an evaluation function of its mechanical and thermal properties is established by limited upper (or lower) bound linear rule to provide reference for the application of low-heat cement to mass concrete. On this basis, the satisfaction on the comprehensive performance of cementitious materials is calculated to draw a satisfaction contour map. Research results show that: the contours of satisfaction on comprehensive performance of low-heat cement cementitious system can be approximated as a series of concentric elliptical lines, and the cementitious material system with fly ash content in and slag content in has high comprehensive performance for lower hydration heat and higher strength. The combination of evaluation function and satisfaction contour map provides a new idea for the comprehensive performance evaluation of composite cementitious material system.

Key words

low heat Portland cement / compound cementitious material / objective function for evaluation / comprehensive performance / hydration heat / mineral admixtures

Cite this article

Download Citations
JIANG Chun-meng, GONG Jing-wei, TANG Xin-jun. Evaluation of Mechanical and Thermal Properties of Low-heat Cement Binding System[J]. Journal of Changjiang River Scientific Research Institute. 2019, 36(5): 116-120,127 https://doi.org/10.11988/ckyyb.20171207

References

[1] 邓铭江, 周小兵,石 泉. 严寒地区混凝土坝工技术及工程实践. 北京: 中国水利水电出版社, 2016: 240-244.
[2] 朱伯芳. 大体积混凝土的温度应力与温度控制.2版. 北京: 中国水利水电出版社, 2012: 1-8.
[3] DE FREITAS J A T, CUONG P T, FARIA R,et al. Modelling of Cement Hydration in Concrete Structures with Hybrid Finite Elements. Finite Elements in Analysis and Design, 2013, 77(3): 16-30.
[4] 朱鹏飞, 宫经伟, 唐新军. 大体积混凝土胶凝材料体系水化放热规律研究. 长江科学院院报, 2018, 35(6): 111-116.
[5] 樊启祥, 杨华全, 李文伟, 等. 两种低热与中热硅酸盐水泥混凝土热力学特性对比分析. 长江科学院院报, 2018, 35(12): 133-137.
[6] 李金玉,彭小平, 曹建国, 等. 高贝利特水泥低热高抗裂大坝混凝土性能的研究. 硅酸盐学报,2004, 32(3):364-371.
[7] 王显斌,文寨军. 低热硅酸盐水泥及其在大型水电工程中的应用. 水泥,2014, 41(11):22-25.
[8] 侯新凯,董跃斌,薛 博, 等. 低热钢渣矿渣硅酸盐水泥的研制(Ⅱ):低水化热优势配料方案和水泥最佳综合性能区. 硅酸盐通报, 2014,33(11):2802-2808.
[9] 瞿立新,周宜红,黄耀英, 等. 混凝土大坝温度状态的多目标模糊综合评价. 河海大学学报(自然科学版),2012,40(6):641-647.
[10] 隋同波,刘克忠,王 晶, 等. 高贝利特水泥的性能研究. 硅酸盐学报,1999, 27(4):106-110.
[11] DHIR R K, ZHENG L. Measurement of Early-age Temperature Rises in Concrete Made with Blended Cements. Magazine of Concrete Research, 2008, 60(2): 109-118.
[12] GB 200—2003, 中热硅酸盐水泥 低热硅酸盐水泥 低热矿渣硅酸盐水泥. 北京:中国标准出版社,2003.
[13] GB/T 17671—1999, 水泥胶砂强度检验方法(ISO法). 北京:中国标准出版社,1999.
[14] GB/T 12959—2008, 水泥水化热测定方法. 北京:中国标准出版社,2008.
PDF(1664 KB)

Accesses

Citation

Detail

Sections
Recommended

/