As a typical spatio-temporal data, the monitoring data of concrete dam deformation in lack at some partial points would bring about inconveniences for deformation analysis. In this paper, we present a method of estimating the missing data of deformation sequence by proposing a spatial proximity point regression interpolation method and a space inverse distance weighted interpolation method based on integral deformation sequences of monitoring points in the vicinity of missing points. Engineering examples verifies that the method proposed in this paper is simple, clear, and is highly precise.
Key words
concrete dam /
spatio-temporal data /
missing data /
spatial interpolation /
estimation method for missing data
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 沈长松, 王世夏, 林益才, 等. 水工建筑物. 北京: 中国水利水电出版社, 2008.
[2] 李雪红, 顾冲时, 徐洪钟. 混凝土坝变形的灰色回归时序模型. 河海大学学报(自然科学版), 2002, 30(6): 116-119.
[3] 李德仁, 王树良, 李德毅. 空间数据挖掘理论与应用. 2版.北京: 科学出版社, 2013.
[4] SHI W Z, FISHER P F, GOODCHILD M. Spatial Data Quality. London: CRC Press, 2002.
[5] MAYER S V, CUKIER K. Big Data: A Revolution That Will Transform How We Live, Work and Think. Hangzhou: Zhejiang People’s Publishing House, 2012.
[6] DASU T. Exploratory Data Mining and Data Cleaning . New York: John Wiley & Sons, 2003.
[7] 王建民, 张 锦, 邓增兵, 等. 时空Kriging插值在边坡变形监测中的应用. 煤炭学报, 2014, 39(5): 874-879.
[8] 李 莎, 舒 红, 徐正全. 利用时空Kriging进行气温插值研究. 武汉大学学报(信息科学版), 2012, 37(2): 237-241.
[9] 徐爱萍, 胡 力, 舒 红. 空间克里金插值的时空扩展于实现. 计算机应用, 2011, 31(1): 273-276.
[10] 王佳璆, 邓 敏, 程 涛,等. 时空序列数据分析和建模. 北京: 科学出版社, 2012.
[11] 任志勇. 辽宁省某市降雨量的空间插值算法比较研究. 北京测绘, 2017, (5): 164-166.