Mechanism of Fracturing Fluid Viscosity in Response to Pulse Frequency

NI Zhun-lin, CAO Han, PENG Can-wei, SUN Ping-he

Journal of Changjiang River Scientific Research Institute ›› 2018, Vol. 35 ›› Issue (3) : 139-143.

PDF(3422 KB)
PDF(3422 KB)
Journal of Changjiang River Scientific Research Institute ›› 2018, Vol. 35 ›› Issue (3) : 139-143. DOI: 10.11988/ckyyb.20171089
TESTS AND MONITORING IN GEOTECHNICAL ENGINEERING

Mechanism of Fracturing Fluid Viscosity in Response to Pulse Frequency

  • NI Zhun-lin1,2, CAO Han1,2, PENG Can-wei1,2, SUN Ping-he1,2
Author information +
History +

Abstract

To investigate the changes of rheology of pulse hydraulic fracturing fluid in response to frequency in shale gas exploitation, we conducted pulse shear tests on guar gum of two different viscosities (30 mPa·s and 10 mPa·s) under five different frequencies (0 Hz, 1 Hz, 3 Hz, 5 Hz and 7 Hz). Test results show that the response of fracturing fluids to pulse frequency varies with the change of viscosity. For fracturing fluid of relatively high viscosity, as frequency rises, the structural viscosity and plastic viscosity both present downward trend in general; whereas apparent viscosity firstly reduces by shear thinning, and then changes slightly when frequency reaches 5 Hz and even more; the flow index of fracturing fluid declines after increasing to a maximum value at frequency 5 Hz. For fracturing fluid of relatively low viscosity, as frequency rises, viscosity changes more slowly than plastic viscosity does, which is favorable for proppant migration during proppant stage, playing a significant role in stabilizing fractures at the later stage of fracturing. In conclusion, the response of rheological properties of highly-viscous fracturing fluid to pulse frequency is less obvious than that of lowly-viscous fluid.

Key words

fracturing fluid / viscosity / pulse frequency / shear thinning behavior / rheology / proppant

Cite this article

Download Citations
NI Zhun-lin, CAO Han, PENG Can-wei, SUN Ping-he. Mechanism of Fracturing Fluid Viscosity in Response to Pulse Frequency[J]. Journal of Changjiang River Scientific Research Institute. 2018, 35(3): 139-143 https://doi.org/10.11988/ckyyb.20171089

References

[1] 张东晓, 杨婷云. 页岩气开发综述[J]. 石油学报, 2013, 34(4):792-801.
[2] 董大忠, 邹才能, 杨 桦,等. 中国页岩气勘探开发进展与发展前景[J]. 石油学报, 2012, 33(增1):107-114.
[3] 张士诚, 郭天魁, 周 彤,等. 天然页岩压裂裂缝扩展机理试验[J]. 石油学报, 2014, 35(3):496-503.
[4] 龙政军. 压裂液性能对压裂效果的影响分析[J]. 钻采工艺, 1999,22(1):49-52.
[5] 张贵金, 刘 杰, 胡大可,等. 黏土水泥膏浆流变性能及其对灌浆的影响[J]. 长江科学院院报, 2017, 34(3):119-125.
[6] 张 健, 魏 涛, 韩 炜,等. CW520丙烯酸盐灌浆材料交联剂合成及其浆液性能研究[J]. 长江科学院院报, 2012, 29(2):55-59.
[7] 张 浩. 高温压裂液流变性影响因素分析[J]. 齐齐哈尔大学学报(自然科学版), 2005, 21(1):98-100.
[8] 周建芳, 张黎明, HUI P S. 两性瓜尔胶衍生物溶液的流变特征[J]. 物理化学学报, 2003, 19(11):1081-1084.
[9] 张 浩, 谢朝阳, 韩 松,等. 火山岩深气层压裂液体系研究与应用[J]. 油田化学, 2005, 22(4):310-312.
[10]WANG X,QI Q,MCCARTHY S, et al.Successful Applications of Borate Crosslinked Fracturing Fluids at High Temperature[C]∥Society of Petroleum Engineers, International Symposium and Exhibition on Formation Damage Control,Lafayette,Louisiana,February 20-21,2002,doi:10.2118/73789-MS.
[11]PARRIS M D,MIRAKYAN A L,ABAD C, et al.A New Shear-Tolerant High-Temperature Fracturing Fluid[C]∥Proceedings of the SPE International Symposium on Oilfield Chemistry,doi:https:∥DOI.ORG/10.2118/121775-ms.
[12]王平全. 不同流变模式下钻井液剪切稀释性评价[J]. 天然气工业, 1997, 17(6):43-45.
[13]江小玲, 雷宗明, 刘 佳. 钻井液流变参数相关性研究[J]. 钻采工艺, 2010, 33(4):15-19.
[14]翟 成, 李贤忠, 李全贵. 煤层脉动水力压裂卸压增透技术研究与应用[J]. 煤炭学报, 2011, 36(12):1996-2001.
[15]鄢捷年.钻井液工艺学[M].北京:中国石油大学出版社,2013.
[16]乌效鸣,蔡记华,胡郁乐.钻井液与岩土工程浆材[M].武汉:中国地质大学出版社,2014.
[17]丁庆军, 管学茂, 胡曙光. 混合材对超细灌浆水泥流变性能的影响[J]. 长江科学院院报, 2002, 19(2):23-26.
[18]杨 谦. 泥浆脉冲器脉冲发生机理研究[D]. 长春:吉林大学, 2011.
[19]刘修善, 苏义脑, 岑章志. 钻井液脉冲传输速度的影响因素分析[J]. 石油钻采工艺, 1999, 21(5):1-4.
PDF(3422 KB)

Accesses

Citation

Detail

Sections
Recommended

/