Lead-contaminated Soil Solidified by Cement-Flyash-Gypsum- desulphurized:Mechanical Strength Characteristics and Prediction Method

CUI Jin-yang, WANG Qiang, GONG Bao-ju, YAO Wei-jing

Journal of Changjiang River Scientific Research Institute ›› 2019, Vol. 36 ›› Issue (4) : 98-103.

PDF(1739 KB)
PDF(1739 KB)
Journal of Changjiang River Scientific Research Institute ›› 2019, Vol. 36 ›› Issue (4) : 98-103. DOI: 10.11988/ckyyb.20170904
ROCK-SOIL ENGINEERING

Lead-contaminated Soil Solidified by Cement-Flyash-Gypsum- desulphurized:Mechanical Strength Characteristics and Prediction Method

  • CUI Jin-yang1, WANG Qiang1, GONG Bao-ju2, YAO Wei-jing1
Author information +
History +

Abstract

Orthogonal unconfined compression test was conducted on lead-contaminated soil solidified by curing agent CFG (cement mixed with flyash and desulphurized gypsum) to investigate the strength characteristics of treated lead-contaminated soils varying with lead ion concentration and CFG dosage. Results reveal that the unconfined compressive strength of stabilized soils increases with the growth of CFG dosage, while reduces with the climbing of lead ion concentration. In the first seven days of curing, the effect of lead ion concentration is greater than that of curing agent dosage; after seven days, the influence of the dosage of curing agent is greater than that of lead ion concentration. At 3 d and 7 d of curing, the influences of both factors on soil strength are small, while at 14 d the influence greatly increases, and at 28 d, the effect is especially significant. Furthermore, the formula of strength prediction based on curing age and CFG dosage is proposed as a reference for the treatment of lead-contaminated soil.

Key words

composite cement material / orthogonal test / unconfined compressive strength / lead-contaminated soil / flyash / desulphurized gypsum / strength prediction

Cite this article

Download Citations
CUI Jin-yang, WANG Qiang, GONG Bao-ju, YAO Wei-jing. Lead-contaminated Soil Solidified by Cement-Flyash-Gypsum- desulphurized:Mechanical Strength Characteristics and Prediction Method[J]. Journal of Changjiang River Scientific Research Institute. 2019, 36(4): 98-103 https://doi.org/10.11988/ckyyb.20170904

References

[1] GEELHOED J S, MEEUSSEN J C L, LUMSDON D G, et al. Modelling of Chromium Behaviour and Transport at Sites Contaminated with Chromite Ore Processing Residue: Implications for Remediation Methods. Environmental Geochemistry & Health, 2001, 23(3):261-265.
[2] MEEGODA J N. Waste Immobilization Technologies. Practice Periodical of Hazardous, Toxic & Radioactive Waste Management, 2009, 3(3):124-131.
[3] LEE D, WAITE T D, SWARBRICK G, et al. Comparison of Solidification/Stabilization Effects of Calcite Between Australian and South Korean Cements. Cement & Concrete Research, 2005, 35(11):2143-2157.
[4] YIN C Y,SHAABAN M G,MAHMUD H B.Chemical Stabilization of Scrap Metal Yard Contaminated Soil Using Ordinary Portland Cement: Strength and Leachability Aspects. Building & Environment, 2007, 42(2):794-802.
[5] 杜延军, 金 飞, 刘松玉,等. 重金属工业污染场地固化/稳定处理研究进展. 岩土力学, 2011, 32(1):116-124.
[6] 席永慧, 熊 浩. 锌污染土固化处理实验研究. 同济大学学报(自然科学版), 2012, 40(11):1608-1612.
[7] 查甫生, 刘晶晶, 许 龙,等. 水泥固化重金属污染土干湿循环特性试验研究. 岩土工程学报, 2013, 35(7):1246-1252.
[8] 魏明俐, 伍浩良, 杜延军,等. 冻融循环下含磷材料固化锌铅污染土的强度及溶出特性研究. 岩土力学, 2015,36(增1):215-219.
[9] 张亭亭, 李江山, 王 平,等. 磷酸镁水泥固化铅污染土的力学特性试验研究及微观机制.岩土力学, 2016,37(增2):279-286.
[10] 张亭亭,李江山,王 平,等. 磷酸镁水泥固化铅污染土的应力-应变特性研究. 岩土力学, 2016,37(增1):215-225.
[11] 刘 玲, 刘海卿, 李喜林,等. 熟石灰-矿渣联合修复重金属污染土强度及淋滤特性研究. 硅酸盐通报, 2016, 35(7):2065-2070.
[12] 林傲然,滕 楠,崔文博,等. 固化重金属Pb污染土无侧限抗压强度增长规律的研究. 路基工程, 2016, (4):133-137.
[13] 王贤昆, 庞建勇, 王 强. 复合水泥土无侧限抗压强度正交试验研究. 长江科学院院报, 2015, 32(12):72-75.
[14] 查甫生,许 龙,崔可锐.水泥固化重金属污染土的强度特性试验研究. 岩土力学, 2012, 33(3):652-656.
[15] 陈 蕾, 刘松玉, 杜延军,等. 水泥固化含铅污染土无侧限抗压强度预测方法. 东南大学学报(自然科学版), 2010, 40(3):609-613.
PDF(1739 KB)

Accesses

Citation

Detail

Sections
Recommended

/