Upper-bound Analysis of Stability of Inhomogeneous Slope under Local Load on Slope Top

LI Cheng-chao, JIANG Peng-ming, ZHOU Ai-zhao

Journal of Changjiang River Scientific Research Institute ›› 2018, Vol. 35 ›› Issue (12) : 118-122.

PDF(3306 KB)
PDF(3306 KB)
Journal of Changjiang River Scientific Research Institute ›› 2018, Vol. 35 ›› Issue (12) : 118-122. DOI: 10.11988/ckyyb.20170683
ROCK-SOIL ENGINEERING

Upper-bound Analysis of Stability of Inhomogeneous Slope under Local Load on Slope Top

  • LI Cheng-chao, JIANG Peng-ming, ZHOU Ai-zhao
Author information +
History +

Abstract

In the presence of local load on the top of slope, a potential sliding surface would induce local buckling failure instead of passing through the slope toe. For inhomogeneous slopes of which the cohesion varies linearly with depth, the calculation formula of the upper-bound analysis of inhomogeneous slope under local load is derived by incorporating a scale factor of cohesion, and the correlation function between safety factor and start angle, end angle and height of critical sliding surface is established. The theoretical formula is transformed into the problem of minimum value of multivariate function and the optimal solution is obtained. The influences of scale factor and local load on slope stability are mainly investigated. Results indicate that the scale factor has a significant impact on the safety factor and the critical height of sliding surface. Local load on slope top mainly controls the failure scope, and also affects the factor of safety.

Key words

inhomogeneous slope / local load / upper bound theorem / safety factor / critical sliding surface

Cite this article

Download Citations
LI Cheng-chao, JIANG Peng-ming, ZHOU Ai-zhao. Upper-bound Analysis of Stability of Inhomogeneous Slope under Local Load on Slope Top[J]. Journal of Changjiang River Scientific Research Institute. 2018, 35(12): 118-122 https://doi.org/10.11988/ckyyb.20170683

References

[1] CHEN W F. Limit Analysis and Soil Plasticity[M] . New York: Elesvier Scientific Publishing Co., 1975.
[2] 陈祖煜. 土力学经典问题的极限上、下限解[J] . 岩土工程学报, 2002, 24(1): 1-11.
[3] 杨昕光, 周 密, 张 伟, 等. 基于二阶锥规划的边坡稳定上限有限元分析[J] . 长江科学院院报, 2016, 33(12): 61-67.
[4] 何思明, 张晓曦, 罗 渝. 坡顶条形荷载作用边坡潜在滑裂面与稳定性分析[J] . 山地学报, 2011, 29(1): 95-100.
[5] MICHALOWSKI R L. Slope Stability Analysis: A Kinematical Approach[J] .Geotechnique,2015,45(2):283-293.
[6] 肖锐铧, 王思敬, 贺小黑, 等. 非均质边坡多级稳定性分析方法[J] . 岩土工程学报, 2013, 35(6): 1062-1068.
[7] 薛 雷, 孙 强, 秦四清, 等. 非均质边坡强度折减法折减范围研究[J] . 岩土工程学报, 2011, 32(2): 275-280.
[8] 王 栋, 金 霞. 考虑强度各向异性的边坡稳定有限元分析[J] . 岩土力学, 2008, 29(3): 667-672.
[9] 王均星, 王汉辉, 张优秀, 等. 非均质土坡的有限元塑性极限分析[J] . 岩土力学, 2004, 25(3): 415-421.
[10] 栾茂田, 年廷凯, 杨 庆. 考虑非均质各向异性效应的阻滑桩加固土坡稳定性分析[J] . 岩土力学, 2006, 27(4): 530-536.
[11] KUMAR J, SAMUI P. Stability Determination for Layered Soil Slopes Using the Upper Bound Limit Analysis[J] . Geotechnical & Geological Engineering, 2006, 24(6): 1803-1819.
[12] 方 薇, 杨果林, 刘晓红, 等. 非均质边坡稳定性极限分析上限法[J] . 中国铁道科学, 2010, 31(6): 14-20.
[13] 孙志彬, 潘秋景, 杨小礼, 等. 非均质边坡上限分析的离散机构及应用[J] . 岩石力学与工程学报, 2017, 36(7): 1-9.
PDF(3306 KB)

Accesses

Citation

Detail

Sections
Recommended

/