Creep Mechanical Behavior of Silty Mudstone under Complicated Geological Conditions

CHEN Jun-wu

Journal of Changjiang River Scientific Research Institute ›› 2018, Vol. 35 ›› Issue (12) : 102-107.

PDF(5313 KB)
PDF(5313 KB)
Journal of Changjiang River Scientific Research Institute ›› 2018, Vol. 35 ›› Issue (12) : 102-107. DOI: 10.11988/ckyyb.20170680
ROCK-SOIL ENGINEERING

Creep Mechanical Behavior of Silty Mudstone under Complicated Geological Conditions

  • CHEN Jun-wu
Author information +
History +

Abstract

In the aim of revealing the creep properties of silty mudstone under complicated geological conditions, creep test was carried out on water-saturated silty mudstone of two different particle sizes collected from a mine under varying temperature and pressure condition by using multiphase coupling creep test device and acoustic emission monitoring system. Results suggest that the internal structure and the external geological environment both exert remarkable influence on the long-term mechanical behavior of silty mudstone. With the decline of confining pressure, rising of temperature, and increase of grain size, the strength of silty mudstone reduced while steady creep rate increased. Steady creep rate decreased linearly with the increase of confining pressure, but augmented exponentially with the rising of temperature. Porosity changed in a similar trend with creep rate, both displaying a U-shape distribution. Under the same confining pressure and temperature, the larger the grain size of specimens, the greater the porosity changed. Moreover, with the rising of temperature and confining pressure, the acoustic emission signal displayed higher frequency and larger amplitude; signals in specimens of larger grain size were more evident.

Key words

silty mudstone / complicated geology / steady creep rate / porosity / acoustic emission

Cite this article

Download Citations
CHEN Jun-wu. Creep Mechanical Behavior of Silty Mudstone under Complicated Geological Conditions[J]. Journal of Changjiang River Scientific Research Institute. 2018, 35(12): 102-107 https://doi.org/10.11988/ckyyb.20170680

References

[1] CHEN L, LIU Y M, WANG J, et al. Investigation of the Thermal-hydro-mechanical (THM) Behavior of GMZ Bentonite in the China-Mock-up Test[J] . Engineering Geology, 2014, 172: 57-68.
[2] 杨立中, 黄 涛. 初论环境地质中裂隙岩体渗流-应力-温度耦合作用研究[J] . 水文地质工程地质, 2000, 27(2):33-35.
[3] 范秋雁,阳克青,王渭明. 泥质软岩蠕变机制研究[J] . 岩石力学与工程学报,2010,29(8):1555-1561.
[4] 茅献彪,张连英,刘瑞雪. 高温状态下泥岩单轴蠕变特性及损伤本构关系研究[J] .岩土工程学报,2013,35(增2):30-37.
[5] 黄小兰,杨春和,刘建军,等. 不同含水情况下的泥岩蠕变试验及其对油田套损影响研究[J] . 岩石力学与工程学报,2008,27(增2):3477-3482.
[6] 马占国,兰 天,潘银光,等. 饱和破碎泥岩蠕变过程中孔隙变化规律的试验研究[J] . 岩石力学与工程学报,2009,28(7):1447-1454.
[7] 李亚丽. 三轴压缩下粉砂质泥岩蠕变力学特性试验研究[J] . 四川大学学报工程科学版, 2012(增1):14-19.
[8 ] 于怀昌, 李亚丽, 刘汉东. 粉砂质泥岩常规力学、蠕变以及应力松弛特性的对比研究[J] . 岩石力学与工程学报, 2012, 31(1):60-70.
[9] 徐慧宁, 庞希斌, 徐 进,等. 粉砂质泥岩的三轴蠕变试验研究[J] . 四川大学学报工程科学版, 2012, 44(1):69-74.
[10] 马 冲, 胡 斌, 詹红兵,等. 渗透压与围压对粉砂质泥岩流变特性的影响[J] . 长江科学院院报, 2017, 34(5):92-98.
[11] MARTIN C D. The Strength of Massive Lac du Bonnet Granite around Underground Openings [D] . Winnipeg: University of Manitoba, 1993.
[12] MARTIN C D, Chandler N A. The Progressive Fracture of Lac du Bonnet Granite [J] . International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1994, 31(6): 643-659.
PDF(5313 KB)

Accesses

Citation

Detail

Sections
Recommended

/