Review on the Application of Curtain Weirs toControlling Algal Blooms of Reservoirs

CHUO Ming-ying, MA Jun, YANG Zheng-jian, XING Ling-hang, LIU De-fu

Journal of Changjiang River Scientific Research Institute ›› 2018, Vol. 35 ›› Issue (10) : 15-20.

PDF(4198 KB)
PDF(4198 KB)
Journal of Changjiang River Scientific Research Institute ›› 2018, Vol. 35 ›› Issue (10) : 15-20. DOI: 10.11988/ckyyb.20170509
WATER RESOURCES AND ENVIRONMENT

Review on the Application of Curtain Weirs toControlling Algal Blooms of Reservoirs

  • CHUO Ming-ying1, MA Jun1, YANG Zheng-jian1, XING Ling-hang2, LIU De-fu1
Author information +
History +

Abstract

The research progress and application prospects of curtain weirs were expounded in this study by analyzing the related research in China and abroad. The algae control mechanism of curtain weirs was explored in the light of hydrodynamics, water temperature stratification, density currents and some other theories. Curtain weirs change the processes of energy exchange, water mixing and stratification using the hydrodynamic principle, and then change the light, water temperature, nutrients, and other main habitat factors that affect the growth and succession of algae, and finally control algal blooms. Before the installation of curtain weirs, the reservoir area is often divided into three segments, namely, the upstream, the midstream, and the downstream. In view of the flow characteristics of different segments, the application scope and types of curtain weirs should be considered before installation in order to achieve a better result. The present study could provide a reference for reservoir water environment protection.

Key words

curtain weir / algal blooms / hydrodynamics / water temperature stratification / density currents / reservoir

Cite this article

Download Citations
CHUO Ming-ying, MA Jun, YANG Zheng-jian, XING Ling-hang, LIU De-fu. Review on the Application of Curtain Weirs toControlling Algal Blooms of Reservoirs[J]. Journal of Changjiang River Scientific Research Institute. 2018, 35(10): 15-20 https://doi.org/10.11988/ckyyb.20170509

References

[1] 朱木兰, 陈飞勇, 金 峰, 等. 水库甲藻水华与防治效果数值模拟[J]. 人民长江, 2007, 38(11): 157-159, 165.
[2] 黄 茁, 曹小欢. 大型水库局部藻华控制技术探讨[J]. 人民长江, 2009, 40(7): 27-29.
[3] 黄明海, 刘凤丽, 金 峰. 水华发生过程水动力学控制方法探讨[C]∥ 第八届全国环境与生态水力学学术研讨会论文集. 北京: 中国水利水电出版社,2008: 339-345.
[4] 周建军. 关于三峡电厂日调节调度改善库区支流水质的探讨[J]. 科技导报, 2005, 23(10): 8-12.
[5] ASAEDA T, PRIYANTHA D G N, SAITOH S, et al. A New Technique for Controlling Algal Blooms in the Withdrawal Zone of Reservoirs Using Vertical Curtains[J]. Ecological Engineering, 1996,7: 95-104.
[6]PRIYANTHA D G N, ASAEDA T, SAITOH S, et al. Modeling Effects of Curtain Method on Algal Blooming in Reservoirs[J]. Ecological Modelling, 1997,98: 89-104.
[7]ASAEDA T, PHAM H S, PRIYANTHA D G N, et al. Control of Algal Blooms in Reservoirs with a Curtain: a Numerical Analysis[J]. Ecological Engineering, 2001,16: 395-404.
[8] CHUNG S W, LEE H, JUNG Y. The Effect of Hydrodynamic Flow Regimes on the Algal Bloom in a Monomictic Reservoir[J].Water Science & Technology, 2008,58(6): 1291-1298.
[9] LEE H S, CHUNG S W, CHOI J K, et al. Feasibility of Curtain Weir Installation for Water Quality Management in Daecheong Reservoir[J]. Desalination and Water Treatment, 2010,19: 164-172.
[10]张 琪, 缪荣丽, 刘国祥, 等. 淡水甲藻水华研究综述[J]. 水生生物学报, 2012, 36(2): 352-360.
[11]杨正健. 基于分层异重流背景下的三峡水库支流水华生消机理及其调控[D]. 武汉:武汉大学, 2014.
[12]刘玉洁, 尹真真. 三峡水库支流回水区富营养化时空分布特征[J]. 环境保护科学, 2014, 40(2): 30-34.
[13]杨 敏, 张 晟, 胡征宇. 三峡水库香溪河库湾蓝藻水华暴发特性及成因探析[J]. 湖泊科学, 2014, 26(3): 371-378.
[14]王松波, 耿 红, 吴来燕. 三峡水库蓄水后库区浮游植物研究进展[J]. 中南民族大学学报(自然科学版), 2013, 32(4): 19-23.
[15]刘德富, 杨正健, 纪道斌,等. 三峡水库支流水华机理及其调控技术研究进展[J]. 水利学报, 2016, 47(3): 443-454.
[16]SHOURIAN M, MORIDI A, KAVEH M. Modeling of Eutrophication and Strategies for Improvement of Water Quality in Reservoirs[J]. Water Science & Technology, 2016, 74(6): 1376-1385.
[17]HOLT J, UMLAUF L.Modelling the Tidal Mixing Fronts and Seasonal Stratification of the Northwest European Continental Shelf[J]. Continental Shelf Research, 2008, 28(7):887-903.
[18]龙良红, 纪道斌, 刘德富, 等. 基于CE-QUAL-W2模型的三峡水库神农溪库湾水流水温特性分析[J]. 长江科学院院报, 2016, 33(5): 28-35.
[19]BOWLING L C, TYLER P A. Chemical Stratification and Partial Meromixis in Reservoirs in Tasmania[J]. Hydrobiologia, 1990, 194: 67-83.
[20]BLEIKER W, SCHANZ F. Light Climate as the Key Factor Controlling the Spring Dynamics of Phytoplankton in Lake Zürich[J]. Aquatic Sciences, 1997, 59(2): 135-157.
[21]GAEDKE U, OLLINGER D, BÄUERLE E, et al. The Impact of the Interannual Variability in Hydrodynamic Conditions on the Plankton Development in Lake Constance in Spring and Summer[J]. Lake Constance, 1998, 53: 565-585.
[22]TIAN R C, NÉEZINA A F, DEIBEL D, et al. Sensitivity of Biogenic Carbon Export to Ocean Climate in the Labrador Sea, a Deep-water Formation Region[J]. Global Biogeochemical Cycles, 2003, 17(4): 85-94.
[23]ELCI S. Effects of Thermal Stratification and Mixing on Reservoir Water Quality[J]. Limnology, 2008, 9(2):135-142.
[24]ZAW M, CHISWELL B. Iron and Manganese Dynamics in Lake Water[J].Water Research,1999,33(8):1900-1910.
[25]黄钰铃, 刘德富, 苏妍妹. 香溪河库湾底泥营养盐释放规律初探[J]. 环境科学与技术, 2009, 32(5): 9-13.
[26]SALMASO N, MOSELLO R, GARIBALDI L, et al. Vertical Mixing as A Determinant of Trophic Status in Deep Lakes: a Case Study from Two Lakes South of the Alps (Lake Garda and Lake Iseo)[J]. Journal of Limnology, 2003, 62(Sup.1): 245-272.
[27]PEARL H W, HUISMAN J. Blooms Like It Hot[J]. Science, 2008, 320(5872): 57-58.
[28]ELOFF J N, STEINITZ Y, SHILO M.Photooxidation of Cyanobacteria in Natural Conditions[J]. Applied & Environmental Microbiology,1976, 31(1):119-126.
[29]钱 宁, 万兆惠. 泥沙运动力学[M]. 北京: 科学出版社, 1983.
[30]王光谦, 方红卫. 异重流运动基本方程[J]. 科学通报, 1996, 41(18): 1715-1720.
[31]YANG Z J, LIU D F, JI D B, et al. Influence of the Impounding Process of the Three Gorges Reservoir Up to Water Level 172.5 m on Water Eutrophication in the Xiangxi Bay[J]. Science China Technological Sciences, 2010, 53(4): 1114-1125.
[32]MA J, LIU D F, WELLS S A, et al. Modeling Density Currents in a Typical Tributary of the Three Gorges Reservoir, China[J]. Ecological Modelling, 2015,296: 113-125.
[33]杨正健, 刘德富, 马 骏, 等. 三峡水库香溪河库湾特殊水温分层对水华的影响[J]. 武汉大学学报(工学版), 2012, 45(1): 1-9.
[34]杨正健, 刘德富, 纪道斌, 等. 防控支流库湾水华的三峡水库潮汐式生态调度可行性研究[J]. 水电能源科学, 2015, 33(12): 48-50, 109.
[35]纪道斌, 刘德富, 杨正健, 等. 汛末蓄水期香溪河库湾倒灌异重流现象及其对水华的影响[J]. 水利学报, 2010, 41(6): 691-696.
[36]曾 辉, 宋立荣, 于志刚, 等. 三峡水库“水华”成因初探[J]. 长江流域资源与环境, 2007, 16(3): 336-339.
[37]谢 涛, 纪道斌, 尹卫平, 等. 三峡水库不同下泄流量香溪河水动力特性与水华的响应[J]. 中国农村水利水电, 2013, 12(11): 1-6,10.
[38]王丽平, 郑丙辉, 张佳磊, 等. 三峡水库蓄水后对支流大宁河富营养化特征及水动力的影响[J]. 湖泊科学, 2012, 24(2): 232-237.
[39]纪道斌, 刘德富, 杨正健, 等. 三峡水库香溪河库湾水动力特性分析[J]. 中国科学: 物理学 力学 天文学, 2010, 40(1): 101-112.
[40]SPIGEL R H, IMBERGER J. Mixing Processes Relevant to Phytoplankton Dynamics in Lakes[J]. New Zealand Journal of Marine and Freshwater Research, 1987, 21(3): 361-377.
[41]IMBERGER J, PATTERSON J C. Physical Limnology[J]. Advances in Applied Mechanics, 1990, 27: 303-475.
[42]GALAT D L. Reservoir Limnology: Ecological Perspectives[J]. Transactions of the American Fisheries Society, 1992, 121(5): 696-698.
[43]LEMBI C A. Limnology, Lake and River Ecosystems[J]. Journal of Phycology, 2001, 37(37): 1146-1147.
[44]JAVES G J, POPLAWSKI W. Understanding and Management of Cyanobacterial Blooms in Sub-tropical Reservoirs of Queensland, Australia[J]. Water Science & Technology, 1998, 37(2): 161-168.
[45]高 宇, 宓永宁. 辽宁省水库氮、磷污染及富营养化研究[J]. 水利技术监督, 2003, 11(2): 40-42.
[46]SVERDRUP H U. On Conditions for the Vernal Blooming of Phytoplankton[J]. Journal of Marine Science, 1953, 18(3): 287-295.
[47]SIEGEL D A,DONEY S C, YODER J A. The North Atlantic Spring Bloom and Sverdrup’s Critical Depth Hypothesis[J]. Science, 2002, 296: 730-733.
[48]HA K, JANG M H, JOO G J. Spatial and Temporal Dynamics of Phytoplankton Communities along a Regulated River System, the Nakdong River, Korea[J]. Hydrobiologia, 2002, 470(1): 235-245.
[49]朱宜平, 张海平, 李飞鹏, 等. 水动力对浮游生物影响的围隔研究[J]. 环境科学, 2010, 31(1): 69-75.
[50]RASSOULZADEGAN F. Plankton and Nutrient Dynamics in Marine Waters[J]. Ophelia, 1995, 41(1): 153-172.
[51]颜润润, 逄 勇, 赵 伟, 等. 环流型水域水动力对藻类生长的影响[J]. 中国环境科学, 2008, 28(9): 813-817.
[52]GROBBELAAR J U. Turbulence in Mass Algal Cultures and the Role of Light/dark Fluctuations[J]. Journal of Applied Phycology, 1994, 6(3): 331-335.
[53]HUISMAN J, JONKER R R, ZONNEVELD C, et al. Competition for Light between Phytoplankton Species: Experimental Tests of Mechanistic Theory[J]. Ecology, 1999, 80(1): 211-222.
[54]王 珂, 逄 勇, 高 光. 不同扰动条件下微囊藻和栅藻竞争能力的比较[J]. 环境科技, 2006, 19(2): 40-42.
[55]陈 洋, 杨正健, 黄钰铃, 等. 混合层深度对藻类生长的影响研究[J]. 环境科学, 2013, 34(8): 3049-3056.
[56]KHANNA D R, BHUTIANI R, CHANDRA K S. Effect of the Euphotic Depth and Mixing Depth on Phytoplanktonic Growth Mechanism[J]. International Journal of Environmental Research, 2009, 3(2): 223-228.
[57]PANNARD A, BORMANS M, LAGADEUC Y. Short-term Variability in Physical Forcing in Temperate Reservoirs: Effects on Phytoplankton Dynamics and Sedimentary Fluxes[J]. Freshwater Biology, 2007, 52(1) : 12-27.
[58]THORNTON K W, KIMMEL B L, PAYNE F E. Reservoir Limnology: Ecological Perspectives[J]. Freshwater Science, 1991, 10(1): 85.
[59]LINDIM C, PINHO J L, VIEIRA J M P. Analysis of Spatial and Temporal Patterns in a Large Reservoir using Water Quality and Hydrodynamic Modeling[J]. Ecological Modelling, 2011, 222(14): 2485-2494.
[60]KIMMEL B L, GROEGER A W. Factors Controlling Primary Production in Lakes and Reservoirs: A Perspective[J]. Lake and Reservoir Management, 1984, 1(1): 277-281.
[61]林秋奇, 韩博平. 水库生态系统特征研究及其在水库水质管理中的应用[J]. 生态学报, 2001, 21(6): 1034-1040.
[62]PAUL L, SCHRüTER K, LABANH J. Phosphorus Elimination by Longitudinal Subdivision of Reservoirs and Lakes[J]. Water Science & Technology, 1998, 37(2): 235-243.
[63]PAUL L. Nutrient Elimination in Pre-dams: Results of Long Term Studies[J]. Hydrobiologia, 2003, 504(1): 289-295.
[64]MORILLO S, IMBERGER J, ANTENUCCI J. Modifying the Residence Time and Dilution Capacity of a Reservoir by Altering Internal Flow-paths[J]. International Journal of River Basin Management, 2006, 4(4): 255-271.
PDF(4198 KB)

Accesses

Citation

Detail

Sections
Recommended

/