Application of Topology Optimization Theory toThree-dimensional Design of Deep Orifice Radial Gate

SU Li-gang, WANG Zheng-zhong, WANG Yue, ZHANG Xue-cai, XU Chao

Journal of Changjiang River Scientific Research Institute ›› 2018, Vol. 35 ›› Issue (10) : 143-147.

PDF(3680 KB)
PDF(3680 KB)
Journal of Changjiang River Scientific Research Institute ›› 2018, Vol. 35 ›› Issue (10) : 143-147. DOI: 10.11988/ckyyb.20170483
HYDRAULIC STRUCTURE AND MATERIAL

Application of Topology Optimization Theory toThree-dimensional Design of Deep Orifice Radial Gate

  • SU Li-gang1,2, WANG Zheng-zhong1,2, WANG Yue1,2, ZHANG Xue-cai1,2, XU Chao1,2
Author information +
History +

Abstract

At present, topology optimization of hydraulic gate all involves two-dimensional rather than spatial scale. In view of this, the simple isotropic material with penalization (SIMP) in continuum topology optimization method is adopted to the three-dimensional topology optimization of a deep orifice radial gate. Moreover, the topology result are simulated by finite element software, and are compared with the V-shaped dual-arm structure commonly used in engineering. The optimum topology design for radial gate arms is a tree structure, with the bearing capacity of the box section built under the requirements of local stability meeting specification standards. Comparison with V-shaped structure demonstrates that the tree structure obtained by topology optimization could reduce the holistic displacement by 15.8% and cut the maximum stress by 15% yet more evenly distributed.

Key words

deep orifice radial gate / three-dimensional topology optimization / SIMP / finite element analysis / tree structure

Cite this article

Download Citations
SU Li-gang, WANG Zheng-zhong, WANG Yue, ZHANG Xue-cai, XU Chao. Application of Topology Optimization Theory toThree-dimensional Design of Deep Orifice Radial Gate[J]. Journal of Changjiang River Scientific Research Institute. 2018, 35(10): 143-147 https://doi.org/10.11988/ckyyb.20170483

References

[1] SL 74—2013,水利水电工程钢闸门设计规范[S]. 北京:中国水利水电出版社,2013.
[2] 刘礼华, 曾又林, 段克让. 表孔三支腿弧门的优化分析和设计[J]. 水利学报, 1996, 2(7): 9-15.
[3] 练继建,李火坤. 基于SQP优化算法的露顶式弧形闸门主框架优化设计[J]. 水利水电技术, 2004, 35(9):63-66.
[4] 王正中. 关于大中型弧形钢闸门合理结构布置及计算图式的探讨[J], 人民长江, 1995, 26(1): 54-59.
[5] BENDSØE M P, KIKUCHI N. Generating Optimal Topologies in Structural Design Using a Homogenization Method[J]. Computer Methods in Applied Mechanics and Engineering, 1988, 71(2): 197-224.
[6] 彭细荣,隋允康. 对连续体结构拓扑优化合理模型的再探讨[J]. 固体力学学报,2016,37(3):181-191.
[7] TONG Xin-xing, GE Wen-jie, SUN Chao,et al. Topology Optimization of Compliant Adaptive Wing Leading Edge with Composite Materials[J]. Chinese Journal of Aeronautics,2014, 27(6): 1488-1494.
[8] 陈艾荣,常 成,马如进. 结构拓扑优化理论及其在桥梁结构找型中的应用[J]. 同济大学学报 (自然科学版),2016, 44(5): 357-663.
[9] 朱军祚,王正中,方寒梅,等. 拓扑优化在大型弧形钢闸门优化布置中的应用[J]. 人民黄河, 2007, 29(6): 63-64.
[10]屈 超, 王正中, 朱军祚,等. 基于ANSYS的三支臂弧形钢闸门拓扑优化布置[J]. 人民长江, 2008, 29(6): 12-15.
[11]肖卫华. 拓扑优化理论及其在水工闸门优化设计中的应用[D]. 南京:河海大学, 2007.
[12]李旭东, 彭晓平. 拓扑优化理论在二维深孔弧形闸门设计应用中的研究[J]. 西北水电, 2008, 8(3): 54-56.
[13]麦麦提吐孙·库尔班. 拓扑优化理论在平面闸门优化设计中的应用[J].水利科技与经济, 2014,20(6):15-17.
[14]CAI Kun, ZHANG Chao. An Optimal Construction of a Hydropower Arch Gate[J]. Advanced Materials Research,2012, 1466(346):109-115.
[15]张 超,蔡 坤. 拓扑优化在新型弧形钢闸门设计中的应用研究[C]∥Altair 2010 HypersWorks 技术大会论文集, Shanghai, China,2010:1-15.
[16]CAI Kun, HE Hong-yang, LI Xin-huan,et al. A New Design of a Hydraulic Steel Radial Gate with Two Oblique Arms by Topology Optimization[J]. Advanced Materials Research,2013, 2450(712):2096-2912.
[17]闫 冬. 基于拓扑优化理论的大跨度三支座水工弧形钢闸门设计研究[D]. 杨凌:西北农林科技大学, 2015.
PDF(3680 KB)

Accesses

Citation

Detail

Sections
Recommended

/