An Auto-classification of Rockmass Discontinuities Based on K-meansCluster Analysis and Cluster Validity Index I: Researchand Application

WANG Jun-zhi, DU Peng-zhao, NIU Zhao-xuan

Journal of Changjiang River Scientific Research Institute ›› 2018, Vol. 35 ›› Issue (9) : 109-113.

PDF(3349 KB)
PDF(3349 KB)
Journal of Changjiang River Scientific Research Institute ›› 2018, Vol. 35 ›› Issue (9) : 109-113. DOI: 10.11988/ckyyb.20170290
ROCK-SOIL ENGINEERING

An Auto-classification of Rockmass Discontinuities Based on K-meansCluster Analysis and Cluster Validity Index I: Researchand Application

  • WANG Jun-zhi1, DU Peng-zhao1, NIU Zhao-xuan2
Author information +
History +

Abstract

Classifying the orientations of rock discontinuities is a fundamental but critically important routine of engineering geology and hydrogeology. The commonly-used rose diagrams of dip directions and strikes and poles to orientations are subjective. It is appreciated to resort to mathematical approaches. In this paper, an automatic grouping method is proposed based on the algorithms of K-means cluster analysis and cluster validity index I, and a Rock Discontinuities Auto-classification Program (RDAP) is developed. By comparing with Shanley and Mahtab’s result (1976), the reliability of the new grouping method or RDAP is verified. In the end, RDAP is used to cluster the gushing fractures to aid in the selection of the optimum position of grouting drillings of a project, which provides a basis for the prevention and control of water gushing.

Key words

rock discontinuities / automatic classification / K-means cluster analysis / cluster validity index I / RDAP / grouting drillings / optimum position

Cite this article

Download Citations
WANG Jun-zhi, DU Peng-zhao, NIU Zhao-xuan. An Auto-classification of Rockmass Discontinuities Based on K-meansCluster Analysis and Cluster Validity Index I: Researchand Application[J]. Journal of Changjiang River Scientific Research Institute. 2018, 35(9): 109-113 https://doi.org/10.11988/ckyyb.20170290

References

[1] 李智毅, 杨裕云. 工程地质学概论[M]. 武汉: 中国地质大学出版社, 1994.
[2] 田开铭, 万 力. 各向异性裂隙介质渗透性的研究与评价[M]. 北京: 学苑出版杜, 1989.
[3] SHANLEY R, MAHTAB M. Delineation and Analysis of Clusters in Orientation Data[J]. Journal of the International Association for Mathematical Geology, 1976, 8(1): 9-23.
[4]HAMMAH R,CURRAN J.Fuzzy Cluster Algorithm for the Automatic Identification of Joint Sets[J].International Journal of Rock Mechanics and Mining Sciences, 1998, 35(7): 889-905.
[5] KLOSE C D, SEO S, OBERMAYER K. A New Clustering Approach for Partitioning Directional Data[J]. International Journal of Rock Mechanics and Mining Sciences, 2005, 42(2): 315-321.
[6] JIMENEZ-RODRIGUEZ R, SITAR N. A Spectral Method for Clustering of Rock Discontinuity Sets[J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(7): 1052-1061.
[7]TOKHMECHI B, MEMARIAN H, MOSHIRI B, et al. Investigating the Validity of Conventional Joint Set Clustering Methods[J]. Engineering Geology,2011,118(3/4): 75-81.
[8] 潘别桐, 徐光黎. 用统计窗法确定岩石节理规模[J]. 工程勘察, 1990, (5): 16-20.
[9] 徐继先, 许 兵, 王思敬. 岩体结构随机模型模拟方法[J]. 地质科学, 1988, (3): 272-282.
[10]陈剑平, 石丙飞, 王 清. 工程岩体随机结构面优势方向的表示法初探[J]. 岩石力学与工程学报, 2005, 24(2): 241-245.
[11]范 雷, 王亮清, 唐辉明. 节理岩体结构面产状的动态聚类分析[J]. 岩土力学, 2007, 28(11): 2405-2408.
[12]冯 羽, 马凤山, 巩城城, 等. 节理岩体结构面优势产状确定方法研究[J]. 工程地质学报, 2011, 19(6): 887-892.
[13]刘 健, 陈 亮, 王春萍, 等. 不同距离计算标准和有效性指标组合方案对节理优势组划分的影响研究[J]. 岩石力学与工程学报, 2015, 34(增1): 3151-3159.
[14]卢 波, 丁秀丽, 邬爱清. 岩体随机不连续面产状数据划分方法研究[J]. 岩石力学与工程学报, 2007, 26(9): 1809-1816.
[15]王 千, 王 成, 冯振元, 等. K-means聚类算法研究综述[J]. 电子设计工程, 2012, (7): 21-24.
[16]MAULIK U,BANDYOPADHYAY S.Performance Evaluation of Some Clustering Algorithms and Validity Indices[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(12): 1650-1654.
[17]马国彦, 常振华. 岩体灌浆排水锚固理论与实践[M]. 北京: 中国水利水电出版社, 2003.
PDF(3349 KB)

Accesses

Citation

Detail

Sections
Recommended

/