Reliability Analysis of Slopes Based on Extreme Learning Machine

SONG Yong-dong, SU Li-jun, ZHANG Chong-lei,SUN Chang-ning, QU Xin

Journal of Changjiang River Scientific Research Institute ›› 2018, Vol. 35 ›› Issue (8) : 78-83.

PDF(2088 KB)
PDF(2088 KB)
Journal of Changjiang River Scientific Research Institute ›› 2018, Vol. 35 ›› Issue (8) : 78-83. DOI: 10.11988/ckyyb.20170132
ROCK-SOIL ENGINEERING

Reliability Analysis of Slopes Based on Extreme Learning Machine

  • SONG Yong-dong1,2, SU Li-jun1,2,3, ZHANG Chong-lei1,SUN Chang-ning1,2, QU Xin1,2
Author information +
History +

Abstract

As the limit state function of slope can't be explicitly expressed,conventional methods for slope reliability analysis are disadvantageous for difficulties and cumbersome calculation. A method for slope reliability analysis is proposed by combing the finite difference method of FLAC3D and the extreme learning machine (ELM). Samples of random variables are generated through uniform experimental design, and the safety factors of these random variables are calculated through the strength reduction method of FLAC3D. The mapping relationship between safety factors and random variables are obtained to construct the response surface function through the powerful fitting ability of ELM. Furthermore, a large number of random numbers generated by Monte-Carlo method are introduced into the function fitted by ELM to calculate the failure probability and reliability index of slope. Comparison with other methods through case study manifests that the proposed method is easy to be realized with reliable result.The research result provides a new approach for reliability analysis of slope, which is of broad application prospect.

Key words

slope reliability / extreme learning machine (ELM) / response surface function / strength reduction method / Monte-Carlo simulation / failure probability

Cite this article

Download Citations
SONG Yong-dong, SU Li-jun, ZHANG Chong-lei,SUN Chang-ning, QU Xin. Reliability Analysis of Slopes Based on Extreme Learning Machine[J]. Journal of Changjiang River Scientific Research Institute. 2018, 35(8): 78-83 https://doi.org/10.11988/ckyyb.20170132

References

[1] 赵寿刚,兰 雁,沈细中,等. 蒙特卡罗法在土质边坡可靠性分析中的应用[J]. 人民黄河,2006,28(5):65-66.
[2] 林育梁. 岩土与结构工程中不确定性问题及其分析方法[M]. 北京:科学出版社,2009.
[3] 黄华坚, 陈建康, 王 东,等. 强度参数对土坡稳定可靠度指标的影响分析[J]. 长江科学院院报, 2009, 26(4):27-30.
[4] 吴 锐, 苏爱军, 张 申,等. 中心点法在岸坡稳定性分析中的应用[J]. 长江科学院院报, 2013, 30(6):80-82.
[5] 张璐璐,张 洁,徐 耀,等. 岩土工程可靠度理论[M]. 上海:同济大学出版社,2011.
[6] L Q, LOW B K. Probabilistic Analysis of Underground Rock Excavations Using Response Surface Method and SORM[J]. Computers & Geotechnics, 2011, 38(8):1008-1021.
[7] 陈 欣, 付建军, 赵海斌,等. 有限差分强度折减法中融合蒙特卡洛思想的边坡可靠性分析[J]. 长江科学院院报, 2011, 28(4):36-40.
[8] 冯敏杰. 基于神经网络的边坡稳定可靠度分析方法研究[D]. 合肥:合肥工业大学, 2008.
[9] 赵洪波. 基于支持向量机的边坡可靠性分析[J]. 岩土工程学报, 2007, 29(6):819-823.
[10]潘华贤,程国建,蔡 磊. 极限学习机与支持向量机在储层渗透率预测中的对比研究[J]. 计算机工程与科学,2010,31(2):131-134.
[11]史 峰,王 辉,郁 磊,等. MATLAB智能算法30个案例分析[M]. 北京:北京航空航天大学出版社,2011.
[12]丁 华,常 琦,杨兆建,等. 基于极限学习机的采煤机功率预测算法研究[J]. 煤炭学报,2016,41(3):794-800.
[13]陈育民,徐鼎平. FLAC/FLAC3D基础与工程实例[M]. 北京:中国水利水电出版社,2013.
[14]迟世春,关立军.基于强度折减的拉格朗日差分方法分析土坡稳定性[J].岩土工程学报,2004,26(1):42-46.
[15]HUANG G B, ZHU Q Y, SIEW C K. Extreme Learning Machine: A New Learning Scheme of FeedforwardNeural Networks[C]∥Proceedings of International Joint Conference on Neural Networks. Budapest, Hungary, July 25-29, 2004:985-990.
[16]HUANG G B, ZHU Q Y, SIEW C K. Extreme Learning Machine:Theory and Applications[J]. Neurocomputing, 2006, 70:489-501.
[17]吴坤铭,王建国,谭晓慧,等. 响应面与强度折减有限元耦合的方法研究边坡可靠度[J]. 合肥工业大学学报(自然科学版),2009,32(6):885-889.
[18]方开泰. 均匀设计—数论方法在试验设计的应用[J]. 应用数学学报,1980,3(4):363-372.
[19]方开泰. 均匀设计与均匀设计表[M]. 北京:科学出版社,1994.
[20]傅旭东, 茜平一, 刘祖德. 边坡稳定可靠性的随机有限元分析[J]. 岩土力学, 2001, 22(4):413-418.
PDF(2088 KB)

Accesses

Citation

Detail

Sections
Recommended

/