Model of Multicomponent Contaminants Diffusion in Consideration of Components' Activity

JU Zhan-ying, ZHANG Zhi-hong

Journal of Changjiang River Scientific Research Institute ›› 2018, Vol. 35 ›› Issue (8) : 67-71.

PDF(1943 KB)
PDF(1943 KB)
Journal of Changjiang River Scientific Research Institute ›› 2018, Vol. 35 ›› Issue (8) : 67-71. DOI: 10.11988/ckyyb.20170111
ROCK-SOIL ENGINEERING

Model of Multicomponent Contaminants Diffusion in Consideration of Components' Activity

  • JU Zhan-ying, ZHANG Zhi-hong
Author information +
History +

Abstract

Compacted clay liner system with isolation and barrier function used in solid waste disposal is of low permeability. Diffusion, as a consequence, is the dominant pattern of leachate solute migration in the clay liner. In engineering practice, multicomponent contaminants coexist in the leachate of storage yards. In view of this, the diffusion law of multicomponent solute in the impervious clay liner is researched. An equation of multicomponent contaminants diffusion in clay liner is built by introducing the coefficient of activity which reflects the effective concentration of components based on the principle of linear momentum balance. Numerical solution is calculated by finite element software COMSOL Multiphysics. Results show that the introduction of coefficient of activity has hindered the transport progress of individual component. The results could be regarded as theoretical basis when designing economic and reasonable impervious barrier for storage yards.

Key words

multicomponent / diffusion of contaminants / coefficient of activity / clay lining / concentration of components

Cite this article

Download Citations
JU Zhan-ying, ZHANG Zhi-hong. Model of Multicomponent Contaminants Diffusion in Consideration of Components' Activity[J]. Journal of Changjiang River Scientific Research Institute. 2018, 35(8): 67-71 https://doi.org/10.11988/ckyyb.20170111

References

[1] DU Yan-jun, LIU Song-yu, HAYASHI S. Some Factors Controlling Diffusive Transport of Potassium Ion Through Clayey Soils[J]. Journal of Southeast University: English Edition, 2006,22(1):106-111.
[2] 席永慧,任 杰,胡中雄. 污染物离子在黏土介质中扩散系数的测定[J].同济大学学报,2003,31(5):595-599.
[3] 陈云敏,谢海建,柯 瀚,等. 层状土中污染物的一维扩散解析解[J].岩土工程学报, 2006, 28(4): 521-524.
[4] 谢海建,唐晓武,陈云敏,等. 原始土层影响下成层介质污染物一维扩散模型[J].浙江大学学报:工学版, 2006, 40(12): 2191-2195.
[5] XIE Hai-jian, THOMAS H R, CHEN Yun-min, et al. Diffusion of Organic Contaminants in Triple-layer Composite Liners: An Analytical Modeling Approach[J]. Acta Geotechnica, 2015, 10(2): 255-262.
[6] 张文杰, 赵 培, 贾文强. 一维对流-扩散试验各种边界条件及其统一形式解析解[J].岩土力学, 2015, 36(10):2759-2764.
[7] QUINTARD A M, BLETZACKER L, CHEN U D, et al. Nonlinear, Multicomponent, Mass Transport in Porous Media[J]. Chemical Engineering Science, 2006, 61(8): 2643-2669.
[8] 武文华, 李锡夔. 多孔介质中含均相/非均相反应传质过程数值模拟[J].岩土力学, 2008, 29(5): 1152-1158.
[9] CLASS H, HELMIG R, BASTIAN P. Numerical Simulation of Non-isothermal Multiphase Multicomponent Processes in Porous Media 1—An Efficient Solution Technique[J]. Advances in Water Resources, 2002, 25(5): 533-550.
[10]陈 香. CuSO4-NiSO4-H2O三元溶液体系的活度研究[D]. 长沙:中南大学, 2014.
[11]KRISHNA R. A Unified Theory of Separation Processes Based on Irreversible Thermodynamics[J]. Chemical Engineering Communications, 1987, 59(1-6): 33-64.
[12]XI Yong-hui, REN J, HU Zhong-xiong. Laboratory Determination of Diffusion and Distribution Coefficients of Contaminants in Clay Soil[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 397-402.
[13]吴 桐. 纳滤海水软化中试工艺优化及结垢趋势预测研究[D]. 青岛:中国海洋大学, 2015.
[14]朱 敏. 一维多组分溶质运移模型研究[D]. 北京:北京工业大学, 2015.
PDF(1943 KB)

Accesses

Citation

Detail

Sections
Recommended

/