To explore the creep mechanical behavior of mudstone under different temperature and stress fields, we carried out triaxial step-loading creep test on mudstone at room temperature (25 ℃), 60 ℃ and 120 ℃, and built a constitutive creep model in consideration of damage and temperature effect according to the obtained creep curves and creep parameters under different temperature and stress fields. Results show that high temperature promoted the internal molecular motion of mudstone, weakened the mutual cementitious force between particles, and made the creep characteristic more obvious; confining pressure inhibited the internal damage development of mudstone to some extent. Steady creep rate increased in an exponential function with the rising of deviatoric stress and temperature; but reduced linearly with the increase of confining pressure. Under each temperature field, the long-term strength and the long-term shear strength parameters of mudstone increased in a good linear relationship with the increase of confining pressure; under the same confining pressure, however, the long-term strength weakened with the rising of temperature. The constitutive creep model coupling heat-mechanical effect on the basis of classic Nishihara model could well simulate the creep behaviors of mudstone under temperature and stress fields. Fitting results suggest that the elastic modulus and viscosity of mudstone reduced linearly with the rising of temperature, while α increased with the rising of temperature.
Key words
mudstone /
temperature and stress field /
triaxial stepped creep /
steady creep rate /
long-term strength /
constitutive model
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 孙 钧. 岩土材料流变及其工程应用[M]. 北京:中国建筑工业出版社, 1999.
[2] 徐慧宁, 庞希斌, 徐 进,等. 粉砂质泥岩的三轴蠕变试验研究[J]. 四川大学学报(工程科学版), 2012, 44(1):69-74.
[3] 张向东, 傅 强. 泥岩三轴蠕变实验研究[J]. 应用力学学报, 2012, 29(2):154-158.
[4] 张向东, 尹晓文, 傅 强. 分级加载条件下紫色泥岩三轴蠕变特性研究[J]. 实验力学, 2011, 26(1):61-66.
[5] 于怀昌, 李亚丽, 刘汉东. 粉砂质泥岩常规力学、蠕变以及应力松弛特性的对比研究[J]. 岩石力学与工程学报, 2012, 31(1):60-70.
[6] 刘保国, 崔少东. 泥岩蠕变损伤试验研究[J]. 岩石力学与工程学报,2010,29(10):2127-2133.
[7] 范秋雁, 阳克青, 王渭明. 泥质软岩蠕变机制研究[J]. 岩石力学与工程学报, 2010, 29(8):1555-1561.
[8] 茅献彪, 张连英, 刘瑞雪. 高温状态下泥岩单轴蠕变特性及损伤本构关系研究[J]. 岩土工程学报, 2013, 35(增2):30-37.
[9] 张连英. 高温作用下泥岩的损伤演化及破裂机理研究[D]. 徐州:中国矿业大学, 2012.
[10]GB/T 50266—2013,工程岩体试验方法标准[S]. 北京:中国计划出版社,2013.
[11]郤保平, 赵阳升, 赵金昌,等. 层状盐岩温度应力耦合作用蠕变特性研究[J]. 岩石力学与工程学报, 2008, 27(1):90-96.
[12]LI X, CAO W G, SU Y H. A Statistical Damage Constitutive Model for Softening Behavior of Rocks[J].Engineering Geology, 2012, 143/144: 1-17.
[13]周宏伟,王春萍,段志强,等. 基于分数阶导数的盐岩流变本构模型[J]. 中国科学(物理学·力学·天文学),2012, 42(3): 310-318.
[14]徐卫亚, 周家文, 杨圣奇, 等. 绿片岩蠕变损伤本构关系研究[J]. 岩石力学与工程学报, 2006, 25(增1):3093-3097.
[15]陈文玲, 赵法锁, 弓虎军. 三轴蠕变试验中云母石英片岩蠕变参数的研究[J]. 岩石力学与工程学报, 2011,30(增1):2810-2816.