Dam Deformation Monitoring by Radial Basis Function Model Optimized by Particle Swarm Optimization with Inertia Weight and AdaBoost

SHEN Jing-xin, FANG Bin, ZHENG Dong-jian, GUO Zhi-yun, LI Dan

Journal of Changjiang River Scientific Research Institute ›› 2018, Vol. 35 ›› Issue (5) : 57-62.

PDF(2666 KB)
PDF(2666 KB)
Journal of Changjiang River Scientific Research Institute ›› 2018, Vol. 35 ›› Issue (5) : 57-62. DOI: 10.11988/ckyyb.20161313
ENGINEERING SAFETY AND DISASTER PREVENTION

Dam Deformation Monitoring by Radial Basis Function Model Optimized by Particle Swarm Optimization with Inertia Weight and AdaBoost

  • SHEN Jing-xin1,2, FANG Bin1,3, ZHENG Dong-jian1,2, GUO Zhi-yun1,2, LI Dan1,2
Author information +
History +

Abstract

Deformation monitoring is a requisite for dam safety monitoring. Due to a large number of factors, neural networks such as back propagation (BP) and radial basis function (RBF) are often used for parameters selection and model establishment, of which RBF has been widely employed on account of its simple network structure and rapid convergence. Nonetheless, local optimality and inappropriate selection of parameters will exert great impact on the convergence rate. In view of this, the Particle Swarm Optimization with Inertia Weight (referred to as WPSO) is adopted to optimize three parameters of RBF (central value c of hidden layer base function parameter, width d and connection weight w between hidden layer and output layer parameter). In subsequence, the WPSO-RBF model is integrated as a weaker classifier by AdaBoost algorithm, hence establishing a WPSO-RBF-AdaBoost model for dam deformation monitoring. The model is applied to practical engineering, and results suggest that the present model is of fast convergence, high classification precision and good generalization ability.

Key words

dam deformation / monitoring model / Particle Swarm Optimization with Inertia Weight / RBF neural network / AdaBoost algorithm

Cite this article

Download Citations
SHEN Jing-xin, FANG Bin, ZHENG Dong-jian, GUO Zhi-yun, LI Dan. Dam Deformation Monitoring by Radial Basis Function Model Optimized by Particle Swarm Optimization with Inertia Weight and AdaBoost[J]. Journal of Changjiang River Scientific Research Institute. 2018, 35(5): 57-62 https://doi.org/10.11988/ckyyb.20161313

References

[1] 吴中如.水工建筑物安全监控理论及其应用[M].北京:高等教育出版社,2003.
[2] SU Huai-zhi, HU Jiang, WU Zhong-ru. A Study of Safety and Early-warning Method for Dam Global Behavior [J].Structural Health Monitoring, 2012, 11(3): 269-279.
[3] 王 凌.智能优化算法及其应用[M].北京:清华大学出版社,2001.
[4] PARK J, SANDBERG I W. Universal Approximation Using Radial-Basis-Function Networks[J]. Neural Computation,1991,3(2):246-257.
[5] 张 辉,柴 毅.一种改进的RBF神经网络参数优化方法[J].计算机工程与应用,2012,48(20):146-149,157.
[6] 胡德华,郑东健,付浩雁.AdaBoost-BP模型在大坝变形预测中的应用[J].三峡大学学报(自然科学版),2015,37(5):5-8.
[7] SHI Y H, EBERHART R C. Empirical Study of Particle Swarm Optimization[C]∥Proceedings of the 1999 Congress on Evolutionary Computation-CEC 99. Washington, DC, USA, July 6-9,1999:1945-1950.
[8] 黄剑竹.改进RBF-AdaBoost模型及其在年径流预测中的应用[J].人民珠江,2015,(1):32-36.
[9] 胡 昊,魏继红.基于PSO-RBF的边坡安全系数预测[J].河南科学,2016,34(5):747-751.
[10]CHEN S, HONG X, LUK B L, et al. Non-linear System Identification Using Particle Swarm Optimization Tuned Radial Basis Function Models[J]. International Journal of Bio-inspired Computation, 2009,1(4): 246-258.
[11]周 驰,高海兵,高 亮,等.粒子群优化算法[J].计算机应用研究,2003,20(12):7-11.
[12]SHI Y H, EBERHART R C. A Modified Particle Swarm Optimizer[C]∥Proceedings of IEEE International Conference on Evolutionary Computation. Anchorage Alaska, USA, May 4-9, 1998: 69-73.
[13]刘建华.粒子群算法的基本理论及其改进研究[D].长沙:中南大学,2009:22-46.
[14]卢金娜.基于优化算法的径向基神经网络模型的改进及应用[D].太原:中北大学,2015.
[15]王小川,史 峰,郁 磊.MATLAB神经网络43个案例分析[M].北京:北京航空航天大学出版社,2016:42.
[16]蒋 明,郑东健,张 凯,等.FA-SVM模型在大坝变形预测中的应用[J].水力发电,2015,41(4): 79-81,99.
[17]乔俊飞,韩红桂.前馈神经网络分析与设计[M].北京:科学出版社,2013.
PDF(2666 KB)

Accesses

Citation

Detail

Sections
Recommended

/