Experimental Study on Thermal Conductivity andStrength of Thermal Shotcrete in Roadway

PANG Jian-yong, HUANG Jin-kun, YAO Wen-jie, LIU Huan, YAO Wei-jin

Journal of Changjiang River Scientific Research Institute ›› 2018, Vol. 35 ›› Issue (2) : 119-124.

PDF(1350 KB)
PDF(1350 KB)
Journal of Changjiang River Scientific Research Institute ›› 2018, Vol. 35 ›› Issue (2) : 119-124. DOI: 10.11988/ckyyb.20161102
HYDRAULIC STRUCTURE AND MATERIAL

Experimental Study on Thermal Conductivity andStrength of Thermal Shotcrete in Roadway

  • PANG Jian-yong, HUANG Jin-kun, YAO Wen-jie, LIU Huan, YAO Wei-jin
Author information +
History +

Abstract

High temperature damage on roadway had been particularly outstanding with the increment of mining depth. By mixing ceramsite, hydrophobic vitrified beads, fly ash and changing the dosage of sand in ordinary shotcrete, we designed orthogonal experiment to researching the variations of compressive strength, tensile strength, flexural strength and heat conductivity coefficient. Experimental results show that hydrophobic vitrified bead is a dominant factor that affects the strengths and heat conductivity coefficient of concrete, hence we recommend the optimum dosage of hydrophobic vitrified beads as 100%. Ceramsite is also a major factor affecting the flexural strength, with a contribution rate up to 60.61% and therefore we conclude the optimum ceramsite dosage to be 20%. With the increasing of fly ash content, heat conductivity coefficient firstly reduced and subsequently increased; while the strength of shotcrete is on the contrary. Finally, with the decline of sand dosage, heat conductivity coefficient had been reducing all the time whereas flexural strength had been increasing, and compressive and tensile strength firstly increased and then reduced; therefore the optimum sand dosage is 580 kg/m3.

Key words

shotcrete / heat preservation and heat insulation / orthogonal test / ceramsite / vitrified beads / fly ash / heat conductivity coefficient / strength

Cite this article

Download Citations
PANG Jian-yong, HUANG Jin-kun, YAO Wen-jie, LIU Huan, YAO Wei-jin. Experimental Study on Thermal Conductivity andStrength of Thermal Shotcrete in Roadway[J]. Journal of Changjiang River Scientific Research Institute. 2018, 35(2): 119-124 https://doi.org/10.11988/ckyyb.20161102

References

[1] 张建隽,李建宇. 玻化微珠保温混凝土抗压强度与导热系数试验研究[J] . 混凝土与水泥制品,2010,(3):60-62.
[2] 张泽平,董彦莉, 李 珠. 玻化微珠保温混凝土正交试验研究[J] . 混凝土与水泥制品,2007,(6):55-57.
[3] 冯文党,刘元珍,李 珠. 玻化微珠保温混凝土受压力学性能试验研究[J] . 混凝土与水泥制品,2014,(1):67-69.
[4] 宋雪娇,胡忠君. 玻化微珠掺量对再生混凝土抗压强度和导热系数影响试验研究[J] . 新型建筑材料,2016,43(5):72-73.
[5] 张泽平,樊亚男,吴 迪. 掺加陶粒的玻化微珠保温混凝土试验研究[J] . 新型建筑材料,2011,38(11):29-31.
[6] 李 瑞,王德志,孟云芳. 高强粉煤灰陶粒混凝土配合比设计及性能研究[J] . 混凝土,2014,(12):111-114.
[7] 刘 喜,吕贝贝,刘全威,等. 高强轻骨料陶粒混凝土配合比及强度影响因素试验研究[J] . 硅酸盐通报,2014,33(4):847-852.
[8] 龚 平. 陶粒混凝土性能影响因素研究[J] . 长江大学学报(自然科学版),2013,10(31):106-108.
[9] 杨健辉,陈 静,张 鹏,等. 基于结构自保温的高性能页岩陶粒混凝土试验研究[J] . 工业建筑,2014,44(12):102-108.
[10] 李培涛,范利丹,余永强,等.页岩陶粒混凝土强度影响因素的试验研究[J] . 新型建筑材料,2016,43(4):14-16,24.
[11] 孙 阳,娄宗科,朱为勇. 大掺量粉煤灰混凝土导温系数试验研究[J] . 中国农村水利水电,2014,(10):108-112.
[12] 王锋峰,崔自治,马成功. Ⅲ级原状粉煤灰混凝土的强度特性研究[J] . 混凝土,2014,(6):141-143.
[13] 蔡正咏,王足献. 正交设计在混凝土中的应用[M] . 北京:中国建筑工业出版社,1985:86-88.
[14] 王小平. 利用样本方差计算离差平方和[J] . 数理医药学杂志,2003,16(5):394-395.
[15] 郭穗勋,黄榕波. 正交试验层次分析法[J] . 大学数学,2004,20(1):114-117.
[16] 汪培庄,郭嗣琮,包研科,等. 因素空间中的因素分析法[J] . 辽宁工程技术大学学报(自然科学版),2014,33(7):866-868.
[17] 王迎超,孙红月,尚岳全,等. 功效系数法在隧道围岩失稳风险预警中的应用[J] . 岩石力学与工程学报,2010,29(增2):3680-3681.
PDF(1350 KB)

Accesses

Citation

Detail

Sections
Recommended

/