The estimation method of rock mechanic parameters based on Hoek-Brown strength criterion could well reflect the nonlinear failure characteristics by taking into account multiple factors such as rock structure, rock block strength, rock mass stress state, etc. With the deep marbles at Jinping project as a research case, the intactness coefficient KV of rock mass is introduced to improving the determination of GSI (geological strength index) value of deep rock mass, and the applicability of this estimation method to deep rock mass is analyzed in detail. Results indicate that the Hoek-Brown strength criterion is feasible in estimating the mechanics parameters of deep rock mass as the four parameters in Hoek-Brown strength criterion are independent and have no correlation with confining pressure state. The intactness coefficient KV of rock mass enhances the objectivity of determining GSI value as it reflects the discontinuities development in rock mass and the excavation disturbance. It is appropriate to calculate parameter σci and mi according to indoor triaxial test results. The envelope curves of Jinping marbles obtained by the method are apparently nonlinear. Under high confining pressure state (15 MPa<σ3<40 MPa), internal friction angle of Jinping marbles decreases by 32%, while cohesion is 3 times that under low confining pressure state.
Key words
deep rock mass /
Hoek-Brown strength criterion /
GSI /
intactness of rock mass /
mechanics parameters
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 周宏伟,谢和平,左建平.深部高地应力下岩石力学行为研究进展[J].力学进展,2005,35(1):91-99.
[2] 张春生,陈祥荣,侯 靖,等. 锦屏二级水电站深埋大理岩力学特性研究[J]. 岩石力学与工程学报,2010,29(10):1999-2009.
[3] HOEK E, BROWN E T. Practical Estimates of Rock Mass Strength[J]. International Journal of Rock Mechanics and Mining Sciences,1997, 34(8):1165-1186.
[4] 王成虎, 何满潮. H-B岩体强度估算新方法及其工程应用[J]. 西安科技大学学报,2006,26(4): 456-464.
[5] CAI M, KAISER P K, UNO H, et al. Estimation of Rock Mass Deformation Modulus and Strength of Jointed Hard Rock Masses Using the GSI System[J]. International Journal of Rock Mechanics & Mining Sciences,2004,41(1):3-19.
[6] CAI M, KAISER P K, TASAKA Y, et al. Determination of Residual Strength Parameters of Jointed Rock Masses Using the GSI System[J]. International Journal of Rock Mechanics &Mining Sciences,2007,44(2):247-265.
[7]闰长斌, 徐国元. 对H-B公式的改进及其工程应用[J]. 岩石力学与工程学报,2005,24(22):4030-4035.
[8] 刘树新, 刘长武, 袁绍国,等. 基于V.RQD值与H-B准则的破碎岩体强度研究[J]. 岩石力学与工程学报,2010,29(8):1670-1676.
[9] 胡盛明, 胡修文. 基于量化的GSI系统和H-B准则的岩体力学参数的估计[J]. 岩土力学,2011,32(3):861-866.
[10]HOEK E. CARRANZA-TORRES C, CORKUM B. H-B Failure Criterion—2002 Edition[C]∥Proceedings of 5th North American Rock Mechanics Symposium and the 17th Tunneling Association of Canada Conference. Toronto:University of Toronto Press, July 7-10, 2002: 267-273.
[11]SONMEZ H, ULUSAY R. Modifications to the Geological Strength Index (GSI) and Their Applicability to Stability of Slopes[J]. International Journal of Rock Mechanics & Mining Sciences, 1999,36(6):743-760.
[12]RUSSO G. A New Rational Method for Calculating the GSI[J]. Tunnelling and Underground Space Technology,2009,24(1):103-111.
[13]MARINOS P G, MARINOS V, HOEK E. The Geological Strength Index (GSI): A Characterization Tool for Assessing Engineering Properties for Rock Masses[C]∥Underground Works under Special Conditions: Proceedings of the ISRM Workshop W1, Madrid, Spain, July 6-7, 2007, doi: 10.1201/NOE0415450287.ch2.
[14]GB 50218—2014,工程岩体分级标准[S]. 北京:中国计划出版社,2014.