Application of BP Neural Network Optimized by Particle SwarmOptimization to Rainfall Spatial Interpolation

QIU Yun-xiang, ZHANG Xiao-xiao, LIU Guo-dong

Journal of Changjiang River Scientific Research Institute ›› 2017, Vol. 34 ›› Issue (12) : 28-32.

PDF(1737 KB)
PDF(1737 KB)
Journal of Changjiang River Scientific Research Institute ›› 2017, Vol. 34 ›› Issue (12) : 28-32. DOI: 10.11988/ckyyb.20160837
WATER RESOURCES AND ENVIRONMENT

Application of BP Neural Network Optimized by Particle SwarmOptimization to Rainfall Spatial Interpolation

  • QIU Yun-xiang1, ZHANG Xiao-xiao1, LIU Guo-dong1, 2
Author information +
History +

Abstract

To better describe the spatial distribution of rainfall, we applied BP neural network optimized by particle swarm optimization to the daily, monthly and yearly rainfall spatial interpolation of the Three Gorges reservoir area, and compared the performance with those of simple BP and Kriging interpolation. We found that in daily and yearly time-scale, PSO-BP neural network performs better than BP and Kriging; while in terms of monthly time-cale, PSO-BP result is close to BP and better than Kriging. We conclude that BP neural network optimized by particle swarm optimization could better reveal the law of spatial distribution of rainfall and has the ability of spatial interpolation in different timescales, and therefore is an excellent method for rainfall spatial interpolation.

Key words

particle swarm optimization / BP neural network / optimization / Kriging interpolation / rainfall interpolation

Cite this article

Download Citations
QIU Yun-xiang, ZHANG Xiao-xiao, LIU Guo-dong. Application of BP Neural Network Optimized by Particle SwarmOptimization to Rainfall Spatial Interpolation[J]. Journal of Changjiang River Scientific Research Institute. 2017, 34(12): 28-32 https://doi.org/10.11988/ckyyb.20160837

References

[1] 胡广义.分布式降雨量估算模型与方法研究[D].武汉:华中科技大学,2009.[2] 朱 蕾,黄敬峰.山区县域尺度降水量空间插值方法比较[J].农业工程学报,2007,23(7):80-85.[3] 张余庆,陈昌春,姚 鑫,等.江西省信江流域极端降水时空变化特征[J].水土保持研究,2015,22(4):189-194,200.[4] 汤国安,杨 昕,等.地理信息系统空间分析实验教程[M].2版.北京:科学出版社,2012.[5] PIAZZA A D, CONTI F L, NOTO L V, et al.Comparative Analysis of Different Techniques for Spatial Interpolation of Rainfall Data to Create a Serially Complete Monthly Time Series of Precipitation for Sicily, Italy[J]. International Journal of Applied Earth Observation and Geoinformation, 2011, 13(3): 396-408.[6] SEO Y M, KIM S W, VIJAY P. Estimating Spatial Precipitation Using Regression Kriging and Artificial Neural Network Residual Kriging(RKNNRK)Hybrid Approach[J].Water Resources Management, 2015, 29(7): 2189-2204.[7] 莫 林,张秋文.人工神经网络在降水量空间插值中的应用研究[J].计算机与数字工程,2007,35(9):9-12.[8] 胡广义,张秋文,张勇传.基于BP人工神经网络的分布式降雨量插值估算[J].华中科技大学学报(自然科学版),2009,37(4):107-110.[9] 胡广义,张秋文,张勇传.GA优化的BPNN模型在分布式降雨量插值中的应用[J].武汉大学学报(工学版),2009,42(4):466-469.[10]SETIONO R. On the Solution of the Parity Problem by a Single Hidden Layer Feedforward Neural Network[J]. Neurocomputing, 1997, 16(3): 225-235.[11]JOU C, YOU S S, CHANG L W.Analysis of Hidden Nodes for Multi-layer Perceptron Neural Networks[J]. Pattern Recognition, 1994, 27(6): 859-864.[12]王小川,史 峰,郁 磊. MATLAB神经网络43个案例分析[M] .北京:北京航空航天大学出版社,2013.[13]KENNEDY J, EBERHART R. Particle Swarm Optimization[C]∥Proceedings of the 1995 IEEE International Conference on Neural Networks. Perth, Australia, November 27-December 1, 1995: 1942-1948.[14]SHI Yu-hui, EBERHART R C. Parameter Selection in Particle Swarm Optimization[C]∥Lecture Notes in Computer Science: International Conference on Evolutionary Programming. California, USA, March 25-27, 1998: 591-600.[15]SHI Y,EBETHART R.C. A modified Particle Swarm Optimizer[C]∥Proceedings of the IEEE Congresson Evolutionary Computation.Piscataway:IEEE,1998:69-73.[16]IMIRE C E, DURUCAN S, KORRE A. River Flow Prediction Using Artificial Neural Networks: Generalization Beyond the Calibration Range[J]. Journal of Hydrology,2000, 233(1/2/3/4): 138-153.
PDF(1737 KB)

Accesses

Citation

Detail

Sections
Recommended

/