PDF(1222 KB)
Extraction of Building Contour from Point Clouds Using DualThreshold Alpha Shapes Algorithm
LI Yun-fan,TAN De-bao,GAO Guang,LIU Rui
Journal of Changjiang River Scientific Research Institute ›› 2016, Vol. 33 ›› Issue (11) : 1-4.
PDF(1222 KB)
PDF(1222 KB)
Extraction of Building Contour from Point Clouds Using DualThreshold Alpha Shapes Algorithm
To balance the contour accuracy and completeness of single threshold Alpha Shapes in extracting point cloud building contours, we present a dual-threshold Alpha Shapes algorithm using a simple ring design concept contour search algorithm to obtain both a good integrity and a relatively high geometric precision of the building’s contour. Furthermore, the initial contour is simplified based on least squares algorithm. In the presence of noise, the simplified contour lines of the present algorithm are closer to the actual contours compared with the classic Douglas Peucker algorithm.
LiDAR / building boundaries extraction / RANSAC / Alpha Shapes algorithm
[1]SAMPATH A, SHAN J. Building Boundary Tracing and Regularization from Airborne LiDar Point Clouds. Photogrammetric Engineering and Remote Sensing, 2007, 73(7): 805.
[2]钱 韬. 从 DSM 数据中自动提取建筑物的方法研究. 测绘与空间地理信息, 2008, 31(6): 137-140.
[3]杨 洋,张永生,马一薇,等. 基于 LiDAR 数据的建筑物轮廓提取. 测绘科学, 2010, 35(3): 203-205.
[4]王大莹,程新文,潘慧波,等. 基于最佳阈值形态学方法对机载 LiDAR 数据进行边缘提取. 测绘工程, 2009, 18(2): 34-37.
[5]马 文,岳建平,曹 爽. 基于影像分割技术的LiDAR 数据建筑物边缘提取. 地理与地理信息科学, 2010, 26(4): 57-59.
[6]黄先锋,程晓光,张 帆,等. 基于边长比约束的离散点准确边界追踪算法. 武汉大学学报: 信息科学版, 2009, 34(6): 688-691.
[7]EDELSBRUNNER H, KIRKPATRICK D, SEIDEL R. On the Shape of a Set of Points in the Plane. IEEE Transactions on Information Theory, 1983, 29(4): 551-559.
[8]李云帆. 机载LiDAR数据联合航空影像的城市建筑物三维重建研究. 武汉:武汉大学, 2012.
[9]沈 蔚,李 京,陈云浩,等. 基于LiDAR数据的建筑轮廓线提取及规则化算法研究. 遥感学报, 2008, 12(5): 692-698.
[10]JOCHEM A, HFLE B, RUTZINGERM, et al. Automatic Roof Plane Detection and Analysis in Airborne LiDar Point Clouds for Solar Potential Assessment. Sensors, 2009, 9(7): 5241-5262.
[11]DE BERG M, VAN KREVELD M, OVERMARS M, et al. Computational Geometry. US: Springer, 2000.
/
| 〈 |
|
〉 |