Characterizing the Effects of Infiltration Amount and Experiment Scale on Preferential Water Flow in Soil with Wavelet Packet Entropy

SHENG Feng, ZHANG Li-yong, WU Dan

Journal of Changjiang River Scientific Research Institute ›› 2017, Vol. 34 ›› Issue (11) : 12-17.

PDF(1175 KB)
PDF(1175 KB)
Journal of Changjiang River Scientific Research Institute ›› 2017, Vol. 34 ›› Issue (11) : 12-17. DOI: 10.11988/ckyyb.20160770
WATER RESOURCES AND ENVIRONMENT

Characterizing the Effects of Infiltration Amount and Experiment Scale on Preferential Water Flow in Soil with Wavelet Packet Entropy

  • SHENG Feng1,2, ZHANG Li-yong1,2, WU Dan1,2
Author information +
History +

Abstract

Preferential flow is a common flow pattern of infiltrated rain and irrigated water in unsaturated soils, and characterizing preferential flow is always a hot topic of soil hydrology researches. In this research, the wavelet packet entropy, including the Shannon entropy and logarithmic energy entropy, was used to characterizing the preferential flow heterogeneity under different infiltration conditions. The research results were compared with those characterized by matrix entropy and fractal characteristic parameter to show the feasibility of applying wavelet packet analysis to preferential soil water flow. The results show that: 1) the wavelet packet entropy is capable of characterizing the heterogeneity of preferential flow patterns; 2) the heterogeneity of preferential flow increases firstly and then decreases as the infiltration amount increases; 3) the heterogeneity of preferential flow increases steadily as the experimental scale increases within this research.

Key words

preferential flow in soil / wavelet packet entropy / experiment scale / heterogeneity / dye tracer

Cite this article

Download Citations
SHENG Feng, ZHANG Li-yong, WU Dan. Characterizing the Effects of Infiltration Amount and Experiment Scale on Preferential Water Flow in Soil with Wavelet Packet Entropy[J]. Journal of Changjiang River Scientific Research Institute. 2017, 34(11): 12-17 https://doi.org/10.11988/ckyyb.20160770

References

[1] 盛 丰,张利勇,吴 丹.土壤优先流模型理论与观测技术的研究进展[J].农业工程学报,2016,32(6):1-10.
[2] VAN SCHAIK N L M B. Spatial Variability of Infiltration Patterns Related to Site Characteristic in a Semi-arid Watershed[J]. Catena, 2009, 78(1): 36-47.
[3] 盛 丰,王 康,张仁铎,等.用分形特征参数定量描述土壤水流运动的非均匀程度[J].水利学报,2009,40(12):1432-1439.
[4] SHENG F,WANG K,ZHANG R D,et al. Characterizing Soil Preferential Flow Using Iodine-starch Staining Experiments and the Active Region Model[J]. Journal of Hydrology, 2009, 367(1/2): 115-124.
[5] 朱 磊,周 清,王 康,等.基于多重分形理论的土壤水非均匀流动分析[J].水科学进展,2009,20(3):392-397.
[6] WANG K,ZHANGR D,HIROSHI Y. Characterizing Heterogeneous Soil Water Flow and Solute Transport Using Information Measures[J]. Journal of Hydrology, 2009, 370(1/4): 109-121.
[7] 盛 丰,王 康,张仁铎,等.田间尺度下土壤水流非均匀运动特征的染色示踪研究[J].水利学报,2009,40(1):101-108.
[8] WANG K, ZHANG R D. Heterogeneous Soil Water Flow and Macropores Described with Combined Tracers of Dye and Iodine[J]. Journal of Hydrology, 2011, 397(1/2): 105-117.
[9] SI B C. Spatial Scaling Analyses of Soil Physical Properties: A Review of Spectral and Wavelet Methods[J].Vadose Zone Journal, 2008, 7(2): 547-562.
[10]PIUELA J, ALVAREA A, ANDINA D, et al. Quantifying a Soil Pore Distribution from 3D Images: Multifractal Spectrum Through Wavelet Approach[J]. Geoderma, 2010, 155(3): 203-210.
[11]罗金明,王永洁,邓 伟,等.基于小波分析的苏打盐渍土的水盐变化特征[J].土壤通报,2010,41(3):688-694.
[12]舒乔生,谢立亚,贾天会,等.砂壤质褐土饱和导水率与物理性质的多尺度关系——小波分析法[J].土壤学报,2011,48(2):440-444.
[13]桑燕芳,王 栋.水文序列小波分析中小波函数选择方法[J].水利学报,2008,39(3):295-300.
[14]ASGARIAN B, AGHAEIDOOST V, SHOKRGOZAR H R. Damage Detection of Jacket Type Offshore Platforms Using Rate of Signal Energy Using Wavelet Packet Transform[J]. Marine Structures, 2016, 45: 1-21.
[15]LI Y,WANG G. Simulation and Generation of Spectrum-compatible Ground Motions Based on Wavelet Packet Method[J].Soil Dynamics and Earthquake Engineering,2016,87:44-51.
[16]杨 青,孙佰聪,朱美臣,等.基于小波包熵和聚类分析的滚动轴承故障诊断方法[J].南京理工大学学报,2013,37(4):517-523.
[17]李双成,高伟明,周巧富,等.基于小波变化的NDVI与地形因子多尺度空间相关分析[J].生态学报,2006,26(12):4198-4203.
[18]闫晓玲,董世运,徐滨士.基于最优小波包shannon熵的再制造电机转子缺陷诊断技术[J].机械工程学报,2016,52(4):7-12.
[19]王艳霞,赵建民,郑忠龙,等.一种基于数据场和小波包熵的掌纹识别方法[J].南京大学学报(自然科学),2015,51(1):174-180.
[20]PACHEPSKY Y, GUBER A, JACQUES D, et al. Information Content and Complexity of Simulated Soil Water Fluxes[J]. Geoderma,2006, 134(3): 253-266.
[21]刘 杰.基于最大加权信息熵模型的水污染物总量分配[J].长江科学院院报,2015,32(1):16-20.
[22]黄耀英,郑 宏,田 斌.信息熵理论在岩体结构加速流变破坏分析中的应用研究[J].长江科学院院报,2011,28(8):50-54.
[23]张文贤,张展羽,王 康.垃圾填埋场覆盖层土壤水运动信息测度分析[J].水科学进展,2009,20(6):838-844.
[24]WOLF F. Berechnung von Information und Komplexitt in Zeitreihen-analyse des Wasserhaushaltes von Bewaldeten Einzugsgebieten[J]. Bayreuther Forum kologie,1999,65:164 .
[25]邵雪杰,顾圣平,曹爱武,等.多沙河流水沙变化特征的小波分析[J].长江科学院院报,2017,34(5):5-8.
[26]唐泽华,盛 丰,高云鹏.入渗水量和试验尺度对土壤水非均匀流动的影响[J].水土保持通报,2015,35(2):173-178.
[27]王 康.多孔介质非均匀流动显色示踪技术与模拟方法[M].北京:科学出版社,2009.
[28]盛 丰.土壤优先流运动的示踪成像技术与分析模拟模型[M].北京:中国水利水电出版社,2015.
PDF(1175 KB)

Accesses

Citation

Detail

Sections
Recommended

/