In the aim of obtaining the relationship between microcosmic mechanism of soil slope instability and macroscopic displacement, a method of slope stability evaluation is proposed. The internal correlation between the soil element stress and the whole stability in the process of soil slope sliding was analyzed through shear strength reduction finite element method, and the stress difference of soil unit on the potential sliding surface during progressive failure of slope was defined. In subsequence, the consistency and uniformity among different criteria, including plastic zone penetration, abrupt change of characteristic displacement, and stress difference, were verified through instability evaluation. Furthermore, the influences of geometric and physical parameters on the horizontal displacement of slope top in limit state were analyzed through single-factor sensitivity analysis method. These parameters include slope height, slope ratio, elastic modulus, density, cohesion, internal friction angle, and Poisson ratio. Finally, the normalized failure criterion for soil slope based on deformation in consideration of both geometric and physical factors was established through the method of coefficient of variation.
Key words
soil slope /
normalized variables /
failure criterion /
shear strength reduction FEM /
global stability
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
黄润秋. 20世纪以来中国的大型滑坡及其发生机制. 岩石力学与工程学报, 2007, 26(3): 433-454.
黄志鹏, 唐辉明, 董志宏,等. 锦屏水电站料场边坡变形特征与破坏机制分析. 长江科学院院报, 2015, 32(10): 65-69,73.
赵尚毅, 郑颖人, 张玉芳. 极限分析有限元法讲座——Ⅱ有限元强度折减法中边坡失稳的判据探讨. 岩土力学, 2005, 2(2):332-336.
郑颖人.岩土数值极限分析方法的发展与应用.岩石力学与工程学报, 2012, 31(7):1297-1316.
兰 睿, 刘唐志.非均质边坡光滑化处理及临界滑动面搜索.长江科学院院报, 2014, 31(6): 95-98,122.
DEY R, HAWLADER B, PHILLIPS R, et al. Large Deformation Finite-element Modeling of Progressive Failure Leading to Spread in Sensitive Clay Slopes. Géotechnique, 2015, 65(8):657-668.
LOCAT A, LEROURIL S, BERNANDER S, et al. Progressive Failures in Eastern Canadian and Scandinavian Sensitive Clays. Canadian Geotechnical Journal, 2012,48(11):1696-1712.
GRIFFITHS D V, LANE P A. Probabilistic Slope Stability Analysis by Finite Elements. Géotechnique, 1999, 49(3): 387-403.
年廷凯, 栾茂田, 杨 庆, 等. 基于强度折减弹塑性有限元方法的路堤稳定性分析. 中国公路学报, 2008, 21(2): 18-22.
MASTUI S. Finite Element Slope Stability Analysis by Shear Strength Reduction Technique. Soils and Foundation, 1992, 32(1): 59-70.
连镇营,韩国城,孔宪京. 强度折减有限元法研究开挖边坡的稳定性. 岩土工程学报,2001, 23(4):407-411.
栾茂田, 武亚军, 年廷凯. 强度折减有限元法中边坡失稳的塑性区判据及其应用. 防灾减灾工程学报,2003,23(3):1-8.
ZIENKIEWICZ O C, HUMPHESON C, LEWIS R W. Associated Visco-plasticity and Plasticity in Soil Mechanics. Géotechnique, 1975, 25(4): 671-689.
迟世春, 关立军. 基于强度折减的拉格朗日差分方法分析土坡稳定性. 岩土工程学报, 2004, 26(1):42-46.
林 杭, 曹 平, 宫凤强. 位移突变判据中监测点的位置和位移方式分析. 岩土工程学报, 2007, 29(9): 1433-1438.
周 钟, 蔡德文, 沙 椿,等. 岩石边坡微震监测安全预警与应用. 长江科学院院报,2014, 31(11):149-154.
裴利剑,屈本宁,钱闪光. 有限元强度折减法边坡失稳判据的统一性. 岩土力学,2010, 31(10):3337-3341.
宋维胜, 李江腾. 几何参数和强度参数对边坡三维稳定性的影响. 中南大学学报(自然科学版), 2013, 44(4): 1634-1638.
戴自航, 卢才金. 边坡失稳机理的力学解释. 岩土工程学报, 2006,28(10):1191-1197.
李满意, 周洪燕, 魏燕珍,等. 类土质边坡失稳机理分析与稳定性研究. 长江科学院院报, 2016,33(5): 111-115.
赵永虎, 刘 高, 毛 举,等. 基于灰色关联度的黄土边坡稳定性因素敏感性分析. 长江科学院院报, 2015,32(7): 94-98.