Advances in Dynamics of Soil Organic Carbon Affected by Water Erosion

HUANG Jin-quan,CHENG Dong-bing,WANG Zhi-gang,LIU Ji-gen,
ZHANG Guan-hua,SUN Bei,ZHANG Ping-cang

Journal of Changjiang River Scientific Research Institute ›› 2016, Vol. 33 ›› Issue (12) : 27-32.

PDF(836 KB)
PDF(836 KB)
Journal of Changjiang River Scientific Research Institute ›› 2016, Vol. 33 ›› Issue (12) : 27-32. DOI: 10.11988/ckyyb.20160337
WATER-SOIL CONSERVATION AND ECO-CONSTRUCTION

Advances in Dynamics of Soil Organic Carbon Affected by Water Erosion

  • HUANG Jin-quan1,2,CHENG Dong-bing1,2,WANG Zhi-gang1,2,LIU Ji-gen1,2,
    ZHANG Guan-hua1,2,SUN Bei1,2,ZHANG Ping-cang1,2
Author information +
History +

Abstract

Dynamics of soil organic carbon(SOC) affected by water erosion plays an important role in accurate assessment of soil erosion role in carbon cycle.In this paper, we discuss the influence of erosion on the pattern of global carbon cycle, and clarify the significance of research on dynamic mechanism of SOC affected by water erosion. On this basis, we introduce the latest domestic and foreign progresses of SOC pattern and dynamic mechanism of SOC pool, and analyze problems in the current research and the development tendency in the future. Through the research, we conclude that soil microorganisms should be taken as the research objects for SOC mineralization affected by water erosion, which will help us to verify erosion role in soil carbon cycle at mechanism level. Furthermore, in order to fully investigate the dynamic mechanism of SOC affected by water erosion, we can employ model simulation method, and it is an urgent research direction for the research in future.

Key words

water erosion / soil organic carbon / global carbon cycle / dynamic mechanism / global climate change

Cite this article

Download Citations
HUANG Jin-quan,CHENG Dong-bing,WANG Zhi-gang,LIU Ji-gen,
ZHANG Guan-hua,SUN Bei,ZHANG Ping-cang.
Advances in Dynamics of Soil Organic Carbon Affected by Water Erosion[J]. Journal of Changjiang River Scientific Research Institute. 2016, 33(12): 27-32 https://doi.org/10.11988/ckyyb.20160337

References

[1] 丁永建, 周成虎, 邵明安,等. 地表过程研究进展与趋势[J]. 地球科学进展, 2013, 28(4): 407-419.
[2] JACINTHE P A, LAL R, KIMBLE J. Carbon Dioxide Evolution in Runoff from Simulated Rainfall on Long-term No-till and Plowed Soils in Southwestern Ohio[J]. Soil and Tillage Research, 2002, 66(1): 23-33.
[3] 朱永官, 李 刚, 张甘霖,等. 土壤安全: 从地球关键带到生态系统服务[J]. 地理学报, 2016, 70(12): 1859-1869.
[4] 刘纪根, 赵 健, 张平仓, 等. 基于 RS 和 GIS 的乌东德水电站坝址区土壤侵蚀预测研究[J]. 长江科学院院报, 2007, 24(4): 10-13.
[5] LAL R. Soil Erosion and Carbon Dynamics[J]. Soil and Tillage Research, 2005, 81(2): 137-142.
[6] REINERS W A. A Summary of the World Carbon Cycle and Recommendations for Critical Research[J]. Brookhaven Symposia in Biology, 1973,(30): 368.
[7] 方精云, 郭兆迪.寻找失去的陆地碳汇[J].自然杂志, 2007,29(1): 1-6.
[8] STALLARD R F. Terrestrial Sedimentation and the Carbon Cycle: Coupling Weathering and Erosion to Carbon Burial[J]. Global Biogeochemical Cycles, 1998, 12(2): 231-257.
[9] LAL R, PIMENTEL D. Soil Erosion: A Carbon Sink or Source? [J]. Science, 2008, 319(5866): 1040.
[10]DOETTERL S, BERHE A A, NADEU E, et al. Erosion, Deposition and Soil Carbon: A Review of Process-level Controls, Experimental Tools and Models to Address C Cycling in Dynamic Landscapes[J]. Earth-Science Reviews, 2016, 154: 102-122.
[11]LAL R. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security[J]. Science, 2004, 304(5677): 1623.
[12]POLYAKOV V, LAL R. Soil Organic Matter and CO2 Emission as Affected by Water Erosion on Field Runoff Plots[J]. Geoderma, 2008, 143(1/2): 216-222.
[13]ANDERSON D W. Decomposition of Organic Matter and Carbon Emissions from Soils[M]. Boca Raton:CRC Lewis Publishers, 1995:165-175.
[14]PAPIERNIK S, LINDSTROM M, SCHUMACHER T, et al. Characterization of Soil Profiles in a Landscape Affected by Long-term Tillage[J]. Soil and Tillage Research, 2007, 93(2): 335-345.
[15]KIRKELS F, CAMMERAAT L H, KUHN N J. The Fate of Soil Organic Carbon upon Erosion, Transport and Deposition in Agricultural Landscapes—A Review of Different Concepts[J]. Geomorphology, 2014, 226: 94-105.
[16]RENWICK W, SMITH S, SLEEZER R, et al. Comment on “Managing Soil Carbon” (II)[J]. Science, 2004, 305(5690): 1567.
[17]WANG Z, GOVERS G, STEEGEN A,et al. Catchment-scale Carbon Redistribution and Delivery by Water Erosion in an Intensively Cultivated Area[J]. Geomorphology, 2010, 124(1): 65-74.
[18]LAL R. Global Soil Erosion by Water and Carbon Dynamics[J]. Soils and Global Change, 1995: 131-142.
[19]KIMBLE J M, Follett R F, Cole C V. The Potential of US Cropland to Sequester Carbon and Mitigate the Greenhouse Effect[M]. Boca Raton: CRC Press, 1998.
[20]MCCARTY G, RITCHIE J. Impact of Soil Movement on Carbon Sequestration in Agricultural Ecosystems[J]. Environmental Pollution, 2002, 116(3): 423-430.
[21]RITCHIE J C, MCCARTY G W. 137Cesium and Soil Carbon in a Small Agricultural Watershed[J]. Soil and Tillage Research, 2003, 69(1/2): 45-51.
[22]方海燕. 137Cs 和210 Pbex示踪黑土区坡耕地土壤侵蚀对有机碳的影响[J].应用生态学报, 2013, 24(7): 1856-1862.
[23]张 雪, 李忠武, 申卫平,等. 红壤有机碳流失特征及其与泥沙径流流失量的定量关系[J]. 土壤学报, 2012, 49(3): 465-473.
[24]潘根兴, 曹建华, 周运超. 土壤碳及其在地球表层系统碳循环中的意义[J]. 第四纪研究, 2000, 20(4): 325-334.
[25]贾松伟, 贺秀斌, 陈云明. 侵蚀逆境下土壤有机碳的迁移[J]. 生态环境, 2004,13(1): 78-80.
[26]GORDON H, HAYGARTH P M, BARDGETT R D. Drying and Rewetting Effects on Soil Microbial Community Composition and Nutrient Leaching[J]. Soil Biology and Biochemistry, 2008, 40(2): 302-311.
[27]RIMAL B K, LAL R. Soil and Carbon Losses from Five Different Land Management Areas under Simulated Rainfall[J]. Soil and Tillage Research, 2009, 106(1): 62-70.
[28]张 雪. 红壤丘陵区坡地侵蚀过程对土壤有机碳物理运移的影响规律研究[D]. 长沙:湖南大学, 2012:1-7,11.
[29]温丽燕, 王连峰. 侵蚀及土地利用管理方式改变对土壤有机碳的影响[J]. 中国农学通报, 2007, 23(7): 362-365.
[30]CAUSARANO H J, DORAISWAMY P C, MCCARTY G W, et al. EPIC Modeling of Soil Organic Carbon Sequestration in Croplands of Iowa[J]. Journal of Environmental Quality, 2008, 37(4): 1345-1353.
[31]袁颖红, 李辉信, 黄欠如,等. 不同施肥处理对红壤性水稻土微团聚体有机碳汇的影响[J]. 生态学报, 2004, 24(12): 2961-2966.
[32]于君宝, 刘景双, 刘淑霞,等. 不同开垦年限黑土耕层有机无机复合体变化及有机碳组分分布特征[J]. 农业系统科学与综合研究, 2004, 20(3): 224-228.
[33]LAL R. Soil Carbon Sequestration to Mitigate Climate Change[J]. Geoderma, 2004, 123(1/2): 1-22.
[34]聂小东, 李忠武, 王晓燕,等. 雨强对红壤坡耕地泥沙流失及有机碳富集的影响规律研究[J]. 土壤学报, 2013, 50(5): 900-908.
[35]MA W, LI Z, DING K, et al. Effect of Soil Erosion on Dissolved Organic Carbon Redistribution in Subtropical Red Soil under Rainfall Simulation[J]. Geomorphology, 2014, 226:217-225.
[36]王志强, 刘宝元, 王旭艳,等. 东北黑土区土壤侵蚀对土地生产力影响试验研究[J]. 中国科学: D 辑, 2009, (10): 1397-1412.
[37]杨艳生, 郑振源. 中国土壤侵蚀及生产力研究[M]. 南京:东南大学出版社, 1994: 13-15.
[38]SIX J F, THIET S, BATTEN R. Bacterial and Fungal Contributions to Carbon Sequestration in Agroecosystems[J]. Soil Science Society of America Journal, 2006, 70(2): 555.
[39]HUANG J, LI Z, NIE X, et al. Microbial Responses to Soil Rewetting in Erosional and Depositional Environments in Relation to the Organic Carbon Dynamics[J]. Geomorphology, 2014, 204(1): 256-264.
[40]余 健, 房 莉, 卞正富,等. 土壤碳库构成研究进展[J]. 生态学报, 2014, 34(17): 4829-4838.
[41]JACINTHE P, LAL R. A Mass Balance Approach to Assess Carbon Dioxide Evolution During Erosional Events[J]. Land Degradation & Development, 2001, 12(4): 329-339.
[42]VAN OOST K, QUINE T, GOVERS G, et al. The Impact of Agricultural Soil Erosion on the Global Carbon Cycle[J]. Science, 2007, 318(5850): 626.
PDF(836 KB)

Accesses

Citation

Detail

Sections
Recommended

/