In order to effectively estimate the variation trend of slope deformation, we employed regression analysis and wavelet transform to decompose the trend term and error term of slope deformation. In subsequence we selected data of optimal decomposition and predicted series of trend term and error term by using BP and RBF neural network. Then, we obtained the forecast results of single term and analyzed the forecast results of fixed weight combination and non-fixed weight combination. Results showed that the results of decomposing trend term and error term by different methods are different.Among the methods, polynomial regression with power of six. Fourier regression with power of five and seven and wavelet transform of sym2 have better results. Moreover, partial prediction is prior to conventional prediction of single term, which verifies the effectiveness of partial prediction in the present research. According to combinatorial forecasting results, fixed weight and non-fixed weight both obviously improved prediction accuracy, and the prediction accuracy of the latter is better than that of the former.
Key words
slope deformation /
regression analysis /
wavelet transform /
combination forecasting /
trend term
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 曹洋兵,晏鄂川,谢良甫. 考虑环境变量作用的滑坡变形动态灰色-进化神经网络预测研究[J]. 岩土力学,2012,33(3):848-852.
[2] 许霄霄,牛瑞卿,叶润青,等. 基于外因响应的滑坡位移预测模型研究[J]. 长江科学院院报,2013,30(7):42-47.
[3] 杨哲峰,罗 林,贾东彦,等. 基于小波去噪的深基坑变形预测研究[J]. 人民长江,2014,45(19):41-46.
[4] 黄惠峰,张献州. 高速铁路沉降变形的组合预测方法[J]. 测绘工程,2014,23(9):48-51.
[5] 杨腾飞,施 昆,汪奇生. 两种客观赋权法及其在确定组合预测权重中的应用[J]. 测绘工程,2014,23(7):59-61.
[6] 肖海平,杨旺生,肖 岚,等. 基于组合预测模型的露天矿高陡边坡滑坡变形研究[J]. 金属矿山,2014,49(4):169-171.
[7] 董 辉,傅鹤林,冷伍明. 滑坡变形的支持向量机非线性组合预测[J]. 铁道学报,2007,29(1):132-136.
[8]曹成度. 高速铁路线下工程沉降变形组合预测探讨[J]. 铁道勘察,2012,38(4):1-3,16.
[9] 罗晓霞,王玉婷,郭 岚. 基于组合赋权法的土地资源定级因素因子权值的确定[J]. 西安科技大学学报,2015,35(1):115-119.
[10]俞俊平, 陈志坚, 武立军,等. 基于蚁群算法优化支持向量机的边坡位移预测[J]. 长江科学院院报, 2015,32(4):22-27.
[11]郭海庆, 张 敏, 黄 涛,等. 基于时移小波-灰色理论的边坡位移预测模型研究[J]. 长江科学院院报, 2015, 32(9):146-152.
[12]刘湘平,谢学斌,罗一忠. 边坡非线性位移预测的动力系统自记忆模型[J]. 岩土工程学报,2010,32(10):1535-1542.