Random Ground Motion Input Models and Seismic Analysis of Aqueduct Structure

WANG Zhou , WU Lin-qiang ,LIU Zeng-hui

Journal of Changjiang River Scientific Research Institute ›› 2016, Vol. 33 ›› Issue (6) : 129-133.

PDF(4325 KB)
PDF(4325 KB)
Journal of Changjiang River Scientific Research Institute ›› 2016, Vol. 33 ›› Issue (6) : 129-133. DOI: 10.11988/ckyyb.20150464
HYDRAULIC STRUCTURE AND MATERIAL

Random Ground Motion Input Models and Seismic Analysis of Aqueduct Structure

  • WANG Zhou1,2, WU Lin-qiang1,2,LIU Zeng-hui2
Author information +
History +

Abstract

On the basis of the Kanai-Tajimi model and Clough-Penzien model of stationary ground motion processes, two types of generalized evolutionary spectral models of fully non-stationary ground motion acceleration process are established, respectively. According to the Code for seismic design of hydraulic structures (DL 5073—2000), the parameter values of generalized evolutionary spectral models are identified. Applying the spectral representation and random function method, the representative samples ensemble of fully non-stationary ground motion process for the two generalized evolutionary spectral models are generated, and the comparative analysis of the second-order numerical statistics is carried out. Moreover, through comparing the average response spectrum of representative samples ensemble and response spectrum calculated by the code, it is found that the generalized evolutionary spectral models of Kanai-Tajimi spectrum is more applicable to seismic design of hydraulic structure. Finally, through combining Kanai-Tajimi generalized evolutionary spectral model with probability density evolution method, the random seismic response analysis and reliability evaluation of an aqueduct structure is investigated.

Key words

fully non-stationary ground motion / hydraulic seismic resistance / probability model / aqueduct / probability density evolution

Cite this article

Download Citations
WANG Zhou , WU Lin-qiang ,LIU Zeng-hui. Random Ground Motion Input Models and Seismic Analysis of Aqueduct Structure[J]. Journal of Changjiang River Scientific Research Institute. 2016, 33(6): 129-133 https://doi.org/10.11988/ckyyb.20150464

References

[1] 陈厚群,吴胜兴,党发宁.高拱坝抗震安全[M].北京:中国电力出版社,2011.
[2] DOUGLAS J, AOCHI H. A Survey of Techniques for Predicting Earthquake Ground Motions for Engineering Purposes[J]. Surveys in Geophysics, 2008, 29(3): 187-220.
[3] KANAI K. Semi-empirical Formula for the Seismic Characteristics of the Ground Motion[J]. Bulletin of the Earthquake Research Institute, University of Tokyo, 1957, 35(2): 308-325.
[4] TAJIMI H. A Statistical Method of determining the maximum response of a Building Structure during an Earthquake[C]∥Proceedings of the Second World Conference on Earthquake Engineering. Tokyo and Kyoto, Japan, 1960,(2): 781-798.
[5] 胡聿贤,周锡元.弹性体系在平稳和平稳化地面运动下的反应[C]∥中国科学院土木建筑研究所地震工程研究报告集(第一集).北京:科学出版社,1962:33-55.
[6] CLOUGH R W, PENZIEN J. Dynamics of Structures Second Edition (Revised) [M]. New York: Computers and Structures, Inc., 2003.
[7] DEODATIS G. Non-stationary Stochastic Vector Processes: Seismic Ground Motion Applications[J]. Probabilistic Engineering Mechanics, 1996, 11: 149-168.
[8] 刘章军,王 磊,但庆文, 等. 非平稳地震动的广义演变谱模型及在水工抗震中的应用[J]. 水利学报, 2015,46(9):1028-1036.
[9] 陈健云,李 静,周 晶, 等.地震动频谱对小湾拱坝非线性响应的影响[J].振动工程学报,2003,16(2):207-211.
[10]刘章军,曾 波,吴林强.非平稳地震动过程模拟的谱表示—随机函数方法[J].振动工程学报,2015,28(3):411-417.
[11]LI Jie, CHEN Jian-bing. Stochastic Dynamics of Structures[M]. Singapore: John Wiley & Sons Pte Ltd, 2009.
[12]李 杰,陈建兵.随机动力系统中的概率密度演化方程及其研究进展[J].力学进展,2010,40(2):170-188.
[13]欧进萍,王光远.结构随机振动[M].北京:高等教育出版社,1998.
[14]DL5073—2000,水工建筑物抗震设计规范[S]. 北京:中国电力出版社,2000.
[15]刘章军,方 兴.大型渡槽结构随机地震反应与抗震可靠度分析[J].长江科学院院报,2012,29(9):77-81.
[16]徐建国,陈 淮,王 博,等.考虑流固动力相互作用的大型渡槽地震响应研究[J].土木工程学报,2005,38(8):67-73.
[17]陈建兵,李 杰.结构反应的内蕴相关性与可靠度分析[J]. 计算力学学报,2008,25(4):521-528.
PDF(4325 KB)

Accesses

Citation

Detail

Sections
Recommended

/