Simulation of Acoustic Emission and Damage Properties of Granite in Brittle and Ductile Failure Processes

WANG Yun-fei, YANG Wen-xuan, JIAO Hua-zhe, WANG Li-ping, ZHAO Hong-bo

Journal of Changjiang River Scientific Research Institute ›› 2016, Vol. 33 ›› Issue (7) : 76-80.

PDF(3165 KB)
PDF(3165 KB)
Journal of Changjiang River Scientific Research Institute ›› 2016, Vol. 33 ›› Issue (7) : 76-80. DOI: 10.11988/ckyyb.20150417
ROCK-SOIL ENGINEERING

Simulation of Acoustic Emission and Damage Properties of Granite in Brittle and Ductile Failure Processes

  • WANG Yun-fei1, YANG Wen-xuan2, JIAO Hua-zhe1, WANG Li-ping1, ZHAO Hong-bo1
Author information +
History +

Abstract

In order to explore the acoustic emission characteristics and damage evolution mechanism of granite in brittle and ductile failure processes, we carry out uniaxial experiment on granite, and simulated experiment under different confining pressures through PFC(particle flow code). On the basis of test, we obtain the acoustic emission curve in failure process and reproduce the evolution process of internal damage. Test results are as follows: 1) critical confining pressure from brittle failure to ductile failure is 100MPa; 2) lag effect of maximum acoustic emission intensity is significantly affected by confining pressure in brittle failure, and the greater confining pressure is, the less obvious lag effect is; 3) in ductile failure, maximum acoustic emission intensity and peak stress appear in the same time without lag effect; 4)acoustic emission curve has single peak in brittle failure ,while gentle curve form in ductile failure; 5)there are few internal serious damage zones in brittle failure with concentrated distribution, and crack extension tends to be in the same direction; 6) internal serious damage zones which distribute throughout the specimen in ductile failure are more than those in brittle failure, and crack extends mainly along two mutually orthogonal directions ;7) rupture angle gradually reduces as confining pressure increases, and rupture surface transforms into crushing zone with the increasing of confining pressure; 8) in brittle failure with low confining pressure, rock is cut into a few blocks ,while in ductile failure with high confining pressure, the rock destruction is comminuted.

Key words

granite / brittle failure / ductile failure / acoustic emission / damage mechanism

Cite this article

Download Citations
WANG Yun-fei, YANG Wen-xuan, JIAO Hua-zhe, WANG Li-ping, ZHAO Hong-bo. Simulation of Acoustic Emission and Damage Properties of Granite in Brittle and Ductile Failure Processes[J]. Journal of Changjiang River Scientific Research Institute. 2016, 33(7): 76-80 https://doi.org/10.11988/ckyyb.20150417

References

[1] 张 茹,谢和平,刘建锋,等. 单轴多级加载岩石破坏声发射特性试验研究[J]. 岩石力学与工程学报,2006,25(12):2584-2588.
[2] 苗金丽,何满潮,李德建,等. 花岗岩应变岩爆声发射特征及微观断裂机制[J]. 岩石力学与工程学报,2009,28(8):1593-1603.
[3] 王云飞, 郑晓娟. 不等侧压下煤岩力学变形特性及声发射时空特征[J]. 工业建筑,2014,44(11):112-118.
[4] 李浩然, 杨春和, 刘玉刚, 等. 花岗岩破裂过程中声波与声发射变化特征试验研究[J]. 岩土工程学报, 2014, 36(10):1915-1923.
[5] 裴建良, 刘建锋, 张 茹, 等. 单轴压缩条件下花岗岩声发射事件空间分布的分维特征研究[J]. 四川大学学报(工程科学版), 2010, 42(6):51-55.
[6] 张宁博, 齐庆新, 欧阳振华, 等. 不同应力路径下大理岩声发射特性试验研究[J]. 煤炭学报, 2014, 39(2): 388-394.
[7] 纪洪广,侯昭飞,张 磊,等. 载荷岩石材料在加载-卸荷扰动作用下声发射特性[J]. 北京科技大学学报,2011,33(1):1-5.
[8] 周志威,刘建锋,邹 航,等. 单轴压缩盐岩声发射特征及损伤演化探讨[J]. 长江科学院院报,2016,33(5):63-68.
[9] 范 雷,周火明,熊诗湖. 现场岩体直剪试验声发射特征及其破坏机制[J]. 长江科学院院报,2012,29(8):29-33.
[10]谢 强, Carlos Dinis da Gama, 余贤斌. 细晶花岗岩的声发射特征试验研究[J]. 岩土工程学报, 2008, 30(5):745-749.
[11]彭守拙, 谷兆祺. 花岗岩声发射特性和破坏机制的实验研究[J]. 岩石力学与工程学报,1991,10(3):281-290.
[12]CAI M, MORIOKA H, KAISER P K, et al. Back-analysis of Rock Mass Strength Parameters Using AE Monitoring Data[J]. International Journal of Rock Mechanics and Mining Sciences,2007,44(4): 538-549.
[13]VILHELM J, RUDAJEV V, LOKAJEK T,et al. Application of Autocorrelation Analysis for Interpreting Acoustic Emission in Rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(7): 1068-1081.
[14]Itasca Consulting Group. PFC2D(Particle Flow Code in 2 Dimensions) Fish in PFC2D[R]. Minneapolis, USA:Itasca Consulting Group,2008.
[15]HOEK E. Strength of Jointed Rock Masses[J]. Geotechnique, 1983, 33(3): 187-223.
[16]MOGI K. Experimental Rock Mechanics[M]. London: Taylor & Francis Group, 2007.
PDF(3165 KB)

Accesses

Citation

Detail

Sections
Recommended

/