Velocity Equations for High-order Numerical Manifold Method

SU Hai-dong

Journal of Changjiang River Scientific Research Institute ›› 2016, Vol. 33 ›› Issue (7) : 121-125.

PDF(838 KB)
PDF(838 KB)
Journal of Changjiang River Scientific Research Institute ›› 2016, Vol. 33 ›› Issue (7) : 121-125. DOI: 10.11988/ckyyb.20150343
HYDRAULIC STRUCTURE AND MATERIAL

Velocity Equations for High-order Numerical Manifold Method

  • SU Hai-dong
Author information +
History +

Abstract

Computational accuracy of structure deformation can be improved greatly by the high-order Numerical Manifold Method (NMM). However, poor accuracy or even incorrect velocity results were obtained in the dynamic analysis involved in large displacement. Based on 2-D triangular mathematical meshes and 1-order polynomial cover functions, the reason of the above cases is discussed through an example of rotation of a rigid bar in this paper. Three treatments and the corresponding equations for high-order velocities are presented for the first time, reflecting the change of configuration coordinates under large displacement. The high-order numerical manifold method is useful to other methods such as Generalized Finite Element Method (GFEM) which introduces generalized freedoms at nodes when solving geometric nonlinear problems.

Key words

Numerical Manifold Method(NMM) / high-order polynomial cover function / large displacement / velocity equation / generalized degree of freedom

Cite this article

Download Citations
SU Hai-dong. Velocity Equations for High-order Numerical Manifold Method[J]. Journal of Changjiang River Scientific Research Institute. 2016, 33(7): 121-125 https://doi.org/10.11988/ckyyb.20150343

References

[1] 石根华. 数值流形方法与非连续变形分析 [M].裴觉民,译.北京:清华大学出版社, 1997.
[2] DUARTE C A, BABUSKA I, ODEN J T. Generalized Finite Element Methods for Three-dimensional Structural Mechanics Problems[J]. Computer & Structures, 2000, 77:215-232.
[3] DAUX C,MOES N, DOLBOW J,et al.Arbitrary Branched and Intersecting Cracks with the Extended Finite Element Method[J]. International Journal for Numerical Methods in Engineering, 2000, 48:1741-1760.
[4] 张湘伟, 章争荣,吕文阁. 数值流形方法研究及应用进展[J]. 力学进展,2010,40(1):1-12.
[5] 李录贤, 王铁军. 扩展有限元法(XFEM)及其应用[J]. 力学进展,2005,35(1):5-20.
[6] 李录贤, 刘书静,张慧华. 广义有限元方法研究进展[J]. 应用力学学报,2009,26(1):96-108.
[7] 苏海东, 崔建华, 谢小玲. 高阶数值流形方法的初应力公式[J]. 计算力学学报, 2010,27(2): 270-274.
[8] WANG C Y, CHUANG C C, SHENG J. Time Integration Theories for the DDA Method with Finite Element Meshes[C]∥SALAMI M R, BANKS D. Proceedings of the First International Conference on Analysis of Discontinuous Deformation. Analysis (DDA) and Simulations of Discontinuous Media. Berkeley, CA: TSI Press, Albuquerque, NM, 1996:263-287.
[9] 苏海东,谢小玲,陈 琴. 高阶数值流形方法在结构静力分析中的应用研究[J]. 长江科学院院报,2005,22(5):74-77.
[10]林绍忠,祁勇峰,苏海东. 数值流形法中覆盖函数的改进形式及其应用[J]. 长江科学院院报,2006,23(6):55-58.
PDF(838 KB)

Accesses

Citation

Detail

Sections
Recommended

/