Current Situation and Prediction Analysis of Land Use Changes in Carbon Emissions Based on RS and GIS

YANG Kun, HU Xin, SHI Yue

Journal of Changjiang River Scientific Research Institute ›› 2016, Vol. 33 ›› Issue (7) : 137-141.

PDF(1132 KB)
PDF(1132 KB)
Journal of Changjiang River Scientific Research Institute ›› 2016, Vol. 33 ›› Issue (7) : 137-141. DOI: 10.11988/ckyyb.20150229
INFORMATION TECHNOLOGY APPLICATION

Current Situation and Prediction Analysis of Land Use Changes in Carbon Emissions Based on RS and GIS

  • YANG Kun1,2, HU Xin1,2, SHI Yue1
Author information +
History +

Abstract

The land use in Lhasa is divided into six types inclusive of farmland, woodland, grassland, water area, building land and unused land according to the remote sensing data in 2000 and 2010 on Erdas platform. Then the distribution of land use and land use transition matrix in the two periods are obtained using ArcGIS spatial analysis techniques, and the land use changes of the years 2020, 2030 and 2040 are predicted by using Markov model. On this basis, the carbon emissions per year of these years are calculated and the emissions every 10 years in the region are predicted. The final results show that the change of ecological land structure and the increase in ecological land (forest) area are the main causes of carbon sequestration. Overgrazing, increasing consumer demand for animal husbandry and development of tourism are the main causes of carbon emissions during land use change. Finally, some suggestions to control carbon emission and limit the decrease of ecological land are put forward: protecting ecological environment, restricting overgrazing, and promoting low-carbon tourism.

Key words

ArcGIS / carbon emissions / land use change / ecological land / Markov model

Cite this article

Download Citations
YANG Kun, HU Xin, SHI Yue. Current Situation and Prediction Analysis of Land Use Changes in Carbon Emissions Based on RS and GIS[J]. Journal of Changjiang River Scientific Research Institute. 2016, 33(7): 137-141 https://doi.org/10.11988/ckyyb.20150229

References

[1] 王 磊.基于投入产出模型的天津市碳排放预测研究[J].生态经济,2014, 30(1):52-56.
[2] 杜 强,陈 乔,杨 锐.基于Logistic模型的中国各省碳排放预测[J].长江流域资源与环境,2013,22(2):143-151.
[3] 陈志建,王 铮,孙 翊.中国区域人均碳排放的空间格局演变及俱乐部收敛分析[J].干旱区资源与环境,2015,25(4):24-29.
[4] 曲福田,卢 娜,冯淑怡.土地利用变化对碳排放的影响[J].中国人口·资源与环境,2011,21(10):76-83.
[6] MUCHER C A, STEINNOCHER K T, KRESSLER E P, et al. Land Cover Characterization and Change Detection for Environmental Monitoring of Pan-Europe[J].International Journal of Remote Sensing, 2000, 21(6): 1159-1181.
[7] 杜国明,匡文慧,孟凡浩,等.巴西土地利用/覆盖变化时空格局及驱动因素[J].地理科学进展,2015,34(1):73-82.
[8] 游和远,吴次芳,沈 萍.土地利用结构与能源消耗碳排放的关联测度及其特征解释[J],中国土地科学,2010,24(11):4-9.
[9] 赵荣钦,陈志刚,黄贤金,等.南京大学土地利用碳排放研究进展[J].地理科学,2012,32(12):1473-1480.
[10]葛全胜,戴君虎,何凡能,等.过去 300 年中国土地利用、土地覆被变化与碳循环研究[J].中国科学(D 辑),2008,38(2):197-210.
[11]王 茜,张增祥,易 玲,等.南京城市扩展的遥感研究[J].长江流域资源与环境,2007,16(5):554-559.
[12]张润森,濮励杰,文继群,等.建设用地扩张与碳排放效应的库兹涅茨曲线假说及验证[J].自然资源学报,2012,27(5):723-733.
[13]UNWTO, UNEP. Climate Change and Tourism: Responding to Global Challenges[M]. Madrid: UNWTO, 2008.
[14]钟开来, WALSH J B. 马尔科夫过程、布朗运动和时间对称(第2版)[M].北京:世界图书出版公司北京公司,2013:36-71.
[15]张勇荣,周忠发,马士彬. 基于 Markov 的石漠化景观演变特征分析与预测[J].长江科学院院报,2015,32(1):52-69.
[16]陈子军,乔 良,王鑫玉.基于动态分类的Markov用户浏览预测模型[J].计算机工程,2008,(11):166-168.
PDF(1132 KB)

Accesses

Citation

Detail

Sections
Recommended

/