Advances in Research of Cohesive Sediment Flocculation

CHAI Zhao-hui, LI Hao-jie, WANG Qian, YANG Guo-lu, LIU Tong-huan

Journal of Changjiang River Scientific Research Institute ›› 2016, Vol. 33 ›› Issue (2) : 1-9.

PDF(1865 KB)
PDF(1865 KB)
Journal of Changjiang River Scientific Research Institute ›› 2016, Vol. 33 ›› Issue (2) : 1-9. DOI: 10.11988/ckyyb.20140855
RIVER-LAKE SEDIENTATION AND REGULATION

Advances in Research of Cohesive Sediment Flocculation

  • CHAI Zhao-hui1,3,4, LI Hao-jie2, WANG Qian1, YANG Guo-lu5, LIU Tong-huan1
Author information +
History +

Abstract

Because of flocculation character of cohesive sediment particle, the particle is different from coarse sediment particle in physical and transport properties. Therefore, the flocculation of cohesive sediment is a hotspot in the theoretical research of river and ocean sediment. In this paper, we summarize research results of cohesive sediment flocculation according to experiments and mathematical models, and introduce advances in the research up to date, as well as existing problems in these studies. There are 3 problems should be paid attention to: 1) experimental studies are mainly focused on single influencing factor, lack of multi-factor research; 2) pattern researches on 3-D structure of sediment flocs are not enough; 3) relevant mathematical models can only describe qualitative laws, rather than quantitative laws. Finally, we should strengthen some aspects in future study on the flocculation of cohesive sediment, such as similarity criteria, multi-factor experiment research, and 3D simulation on large scale.

Key words

cohesive sediment / flocculation experiment / mathematical model / fractal / advances in research

Cite this article

Download Citations
CHAI Zhao-hui, LI Hao-jie, WANG Qian, YANG Guo-lu, LIU Tong-huan. Advances in Research of Cohesive Sediment Flocculation[J]. Journal of Changjiang River Scientific Research Institute. 2016, 33(2): 1-9 https://doi.org/10.11988/ckyyb.20140855

References

[1] HEILIGER C S. A Numerical and Experimental Study of Differential Settling in Cohesive Sediments[D]. South Carolina, USA: Clemson University,2010.
[2] EISMA D. Flocculation and De-flocculation of Suspended Matter in Estuaries[J]. Netherlands Journal of Sea Research, 1986, 20 (2-3): 183-199.
[3] 方红卫, 尚倩倩, 府仁寿, 等. 泥沙颗粒生长生物膜后起动的实验研究: 起动流速的计算[J]. 水科学进展, 2011, 22(3): 301-306.
[4] ANTUNES E, GARCIA F A P, FERREIRA P,et al. Modelling PCC Flocculation by Bridging Mechanism Using Population Balance: Effect of Polymer Characteristics on Flocculation [J]. Chemical Engineering Science, 2010, 65: 3789-3807.
[5] 丁武泉, 李 强, 李 航. 表面电位对三峡库区细颗粒泥沙絮凝沉降的影响[J]. 土壤学报, 2010, 47(4): 698-702.
[6] 吴荣荣, 李九发, 刘启贞, 等. 钱塘江河口细颗粒泥沙絮凝沉降特性研究[J]. 海洋湖沼通报,2007, (3):29-34.
[7] 张 艳, 张志南, 华 尔. 南黄海小型底栖动物分布及其与环境因子的关系[J]. 中国农学通报, 2009, 25(19): 323-329.
[8] 王毓华,黄传兵,兰 叶. 一水硬铝石型铝土矿选择性絮凝分选工艺研究[J]. 中国矿业大学学报,2006, 35(6): 742-746.
[9] ZHEN Y, HAN Y, HU Y, et al. Flocculation Performance and Mechanism of Graphene Oxide for Removal of Various Contaminants from Water [J]. Water Research, 2013, 47(9): 3037-3046.
[10]TANG Y Q, AN M Z, ZHONG Y L, et al. Continuous Ethanol Fermentation from Non-sulfuric Acid-washed Molasses Using Traditional Stirred Tank Reactors and the Flocculating Yeast Strain KF-7[J]. Journal of Bioscience and Bioengineering, 2010, 109(1): 41-46.
[11]陈洪松, 邵明安. 细颗粒泥沙絮凝-分散在水土保持中的应用[J]. 灌溉排水, 2000, 19(4): 13-15.
[12]方红卫, 陈明洪, 陈志和. 环境泥沙的表面特性与模型[M]. 北京: 科学出版社, 2009.
[13]CHEN W,FISHER R R,BERG J C.Simulation of Particle Size Distribution in An Aggregation-breakup Process[J].Chemical Engineering Science,1990,45(9):3003-3006.
[14]MIGNIOT C. A Study of the Physical Properties of Various Forms of Very Fine Sediments and Their Behavior under Hydrodynamic Action[J]. Houille Blanche, 1968, 23(7): 591-620.
[15]张志忠. 长江口细颗粒泥沙基本特性研究[J]. 泥沙研究, 1996, (1): 67-73.
[16]关许为. 长江口泥沙絮凝临界粒径试验研究[M]∥陈松.海洋沉积物——海水界面过程研究.北京: 海洋出版社, 1999: 120-126.
[17]MEHTA A J, LEE S C. Problems in Linking the Threshold Condition for the Transport of Cohesionless and Cohesive Sediment Grain [J]. Journal of Coastal Research, 1993, 10(1): 170-177.
[18]王党伟, 杨国录, 余明辉. 静水中黏性细颗粒泥沙絮凝临界粒径的确定及其影响因素分析[J]. 泥沙研究,2009, (1): 74-80.
[19]TORFS H, MITCHENER H, HUYSENTRUYT H, et al. Settling and Consolidation of Mud-sand Mixtures [J]. Coastal Engineering, 1996, 29(1-2): 27-45.
[20]张庆河, 徐宏明, 奉崇仁, 等. 粉沙质海岸界定浅说和粉沙的基本特性研究[C]∥ 第九届全国海岸工程学术讨论会论文集. 北京: 海洋出版社, 1999: 252-258.
[21]FORREST S R , WITTEN T A. Long-range Correlations in Smoke-particle Aggregates[J]. Journal of Physics A: Mathematical and General, 1979, 12(5): L109-L117.
[22]HUANG H. Fractal Properties of Flocs Formed by Fluid Shear and Differential Settling [J]. Physics of Fluids, 1994, 10(6): 3229-3234.
[23]LOGAN B E, KILPS J R. Fractal Dimension of Aggregates Formed in Different Fluid Mechanical Environments [J]. Water Research, 1995, 29(2): 443-453.
[24]MAGGI F, MIETTA F, WINTERWERP J C. Effect of Variable Fractal Dimension on the Floc Size Distribution of Suspended Cohesive Sediment[J]. Journal of Hydrology, 2007, 343(1-2): 43-55.
[25]CHEN S , EISMA D. Fractal Geometry of in-situ Flocs in the Estuarine and Coastal Environments[J]. Netherlands Journal of Sea Research, 1995, 33(2): 173-182.
[26]WINTERWERP J C. A Simple Model for Turbulence Induced Flocculation of Cohesive Sediment [J]. Journal of Hydraulic Research, 1998, 36(3): 309-326.
[27]SON M, HSU T J. Flocculation Model of Cohesive Sediment Using Variable fractal dimension [J]. Environmental Fluid Mechanics, 2008, 8 (1): 55-71.
[28]杨铁笙, 熊祥忠, 詹秀玲, 等. 黏性细颗粒泥沙絮凝研究概述[J]. 水利水运工程学报, 2003, (2): 65-77.
[29]柴朝晖, 杨国录, 陈 萌. 基于SEM图像的细颗粒泥沙絮体3维分形研究及其应用[J]. 四川大学学报(工程科学版), 2012, 44(1): 88-92.
[30]费祥俊. 泥沙的群体沉降——两种典型情况下非均匀沙沉速计算[J]. 泥沙研究, 1992, (3): 11-19.
[31]钱 宁. 高含沙水流运动[M]. 北京: 清华大学出版社, 1989: 30-84.
[32]BRINKE W B M T. Settling Velocities of Mud Aggregates in the Oosterschelde Tidal Basin (the Netherlands) ,Determined by A Submersible Video System[J]. Estuarine, Coastal and Shelf Science, 1994, 39(6): 549-564.
[33]STERNBERG R W, BERHANE I, OGSTON A. Measurement of Size and Settling Velocity of Suspended Aggregates on the Northern California Continental Shelf [J]. Marine Geology, 1999, 154(1-4): 43-53.
[34]关许为, 陈英祖, 林以安,等. 长江口泥沙絮凝体的现场显微观测[J]. 泥沙研究, 1992, (3): 54-59.
[35]陈锦山,何 青,郭磊城.长江悬浮物絮凝特征[J].泥沙研究,2011,(5):11-18.
[36]JARVIS P, JEFFERSON B, GREGORY J, et al. A Review of Floc Strength and Breakage[J]. Water Research, 2005, 39(4): 3121-3137.
[37]FRANCOIS R J. Strength of Aluminum Hydroxide Flocs[J]. Water Research, 1987, 21(9): 1023-1030.
[38]BACHE D H. Floc Rupture and Turbulence: A Framework for Analysis[J]. Chemical Engineering Science, 2004, 59 (12): 2521-2534.
[39]CHU C P, CHANG B V, LIAO G S, et al. Observations on Changes in Ultrasonically Treated Waste-activated Sludge[J]. Water Research, 2001, 35(4): 1038-1046.
[40]ZHANG Z B, SISK M L, MASHMOUSSHY H, et al. Characterisation of the Breaking Force of Latex Particle Aggregates by Micromanipulation[J]. Particle and Particle Systems Characterization, 1999, 16(6): 278-283.
[41]MATSUO T,UNNO H.Forces Acting on Floc and Strength of Floc[J]. Journal of Environmental Engineering Division, 1981, 107(3): 527-545.
[42]SON M and HSU T J. The Effect of Variable Yield Strength and Variable Fractal Dimension on Flocculation of Cohesive Sediment [J]. Water Research, 2009, 43(14): 3582-3592.
[43]王家生, 陈 立, 刘 林, 等. 阳离子浓度对泥沙沉速影响实验研究[J]. 水科学进展, 2005, 16(2): 169-173.
[44]周晶晶, 金 鹰, 冯卫兵. 电解质和泥沙细颗粒泥沙絮凝的关系[J]. 武汉理工大学学报(交通科学与工程版), 2007, 31(6): 1071-1073.
[45]李秀文, 何 青. 长江口细颗粒泥沙絮凝问题研究综述[J]. 人民长江, 2008, 39(6): 15-17.
[46]蒋国俊, 张志忠. 长江口阳离子浓度与细颗粒泥沙絮凝沉积[J]. 海洋学报, 1995, 17(1): 76-82.
[47]SERRA T, COLOMER J, CASAMITJANA X. Aggregation and Breakup of Particles in A Shear Flow[J]. Journal of Colloid and Interface Science,1997,187(2):466-473.
[48]SPICER P T, PRATSINIS S E, RAPER J, et al. Effect of Shear Schedule on Particle Size, Density, and Structure During Flocculation in Stirred Tanks[J]. Powder Technology,1998, 97(1): 26-34.
[49]COLOMER J, PERERS F, MARRASE C. Experimental Analysis of Coagulation of Particles under Low-shear Flow[J]. Water Research, 2005, 39(13): 2994-3000.
[50]HE W P, NAN J, LI H Y, et al. Characteristic Analysis on Temporal Evolution of Floc Size and Structure in Low-shear Flow[J]. Water Research, 2012, 46(2): 509-520.
[51]武道吉, 谭风训, 王江清. 紊流絮凝技术研究[J]. 水处理技术, 1999, 25(3): 171-173.
[52]阮文杰. 长江口天然水流中细颗粒泥沙的絮凝作用[J]. 海洋科学, 1991,( 6): 39-43.
[53]蒋国俊, 姚炎明, 唐子文. 长江口细颗粒泥沙絮凝沉降影响因素分析[J]. 海洋学报, 2002, 24(4): 51-57.
[54]朱中凡,赵 明,杨铁笙. 紊动水流中细颗粒泥沙絮凝发育特征的试验研究[J]. 水力发电学报,2010, 29(4): 77-83.
[55]关许为, 陈英祖. 长江口泥沙絮凝静水沉降动力学模型的试验研究[J]. 海洋工程, 1995, 13(1): 46-50.
[56]李慧梅,陈建国,袁玉萍.高含沙浑水在絮凝剂作用下的絮凝沉降试验研究[J].泥沙研究,2006,(4):73-77.
[57]MA K S, PIERRE A C. Colloidal Behaviour of Montmorillonite in the Presence of Fe3+ Ions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 155(2-3): 359-372.
[58]WINTERWERP J C. On the Flocculation and Settling Velocity of Estuarine Mud[J]. Continental Shelf Research, 2002, 22(9): 1339-1360.
[59]WINTERWERP J C, VAN KESTEREN W G M. Introduction to the Physics of Cohesive Sediment Dynamics in the Marine Environment[M]. Amsterdam :Elsevier, 2004.
[60]KRANCK K. Flocculation of Suspended Sediment in the Sea[J]. Nature, 1973, 246: 348-350.
[61]VAN DER LEE W T B. Temporal Variation of Floc Size and Settling Velocity in the Dollard Estuary[J]. Continental Shelf Research, 2000, 20(12-13): 1495-1511.
[62]MIKKELSEN O A.Examples of Spatial and Temporal Variations of Some Fine-grained Suspended Particle Characteristics in Two Danish Coastal Water Bodies[J]. Oceannologica Acta, 2002, 25(1): 39-49.
[63]MIETTA F, CHASSAGNE C, MANNING A J, et al. Inuence of Shear Rate, Organic Matter Content pH and Salinity on Mud Flocculation[J]. Ocean Dynamics, 2009, 59(5): 751-763.
[64]DYER K R, CORNELISSE J, DEARNALEY M P, et al. A Comparison of In-situ Techniques for Estuarine Floc Settling Velocity Measurements[J]. Journal of Sea Research, 1996, 36(1-2): 15-29.
[65]CHAI Z H,YANG G L,CHEN M.Treating Urban Dredged Silt with Ethanol Improves Settling and Solidification Properties[J]. Korean Journal of Chemical Engineering, 2013, 30(1): 105-110.
[66]SMOLUCHOWSKI M.Versuch Einer Mathematischen Theorie Der Koagulationskinetik Kolloier Lsungen[J]. Z Phys Chem, 1917, 92: 129-168.
[67]CAMA T R, STEIN P C. Velocity Gradients and Internal Work in Fluid Motion[J]. Journal of the Boston Society of Civil Engineers, 1943, 85: 219-237.
[68]TAMBO N. A Fundamental Investigation of Floc Growth[J]. Journal of American Water Works Association, 1965, 372: 10-19.
[69]HUDSON H E.Physical Aspects of Flocculation[J].Journal of American Water Works Association, 1965, 57: 885-892.
[70]TAMBO N,HOZUMI H.Physical Characteristics of Flocs—II. Strength of Floc[J]. Water Research, 1979, 13(5): 421-427.
[71]WIESNER M R. Kinetics of Aggregate Formation in Rapid Mix[J]. Water Research, 1992, 26(3): 379-387.
[72]LEE D G, BONNER J S, GARTON L S, et al. Modeling Coagulation Kinetics Incorporating Fractal Theories: A Fractal Rectilinear Approach[J]. Water Research, 2003, 34(7): 1987-2000.
[73]LI X, LOGAN B E. Collision Frequencies of Fractal Aggregates with Small Particles by Differential Sedimentation[J]. Environmental Science Technology, 1997, 31(4): 1229-1236.
[74]WEBER-SHIRK M L , LION L W. Flocculation Model and Collision Potential for Reactors with Flows Characterized by High Peclet Numbers[J]. Water Research, 2010, 44(18): 5180-5187.
[75]MAERZ J,VERBEY R, WIRTZ K,et al.Modeling Flocculation Processes: Intercomparison of A Size Class-based Model and A Distribution-based Model[J]. Continental Shelf Research, 2011, 31(10): S84-S93.
[76]YANG Z, YANG H, JIANG Z W, et al. A New Method for Calculation of Flocculation Kinetics Combining Smoluchowski Model with Fractal Theory[J]. Colloids and Surfaces A: Physicocochemical and Engineering Aspects, 2013, 423(20): 11-19.
[77]XU F H, WANG D P, RIEMER N. An Idealized Model Study of Flocculation on Sediment Trapping in An Estuarine Turbidity Maximum[J]. Continental Shelf Research, 2010, 30(12): 1314-1323.
[78]LEE B J, TOORMAN E, MOLZ F J, et al. A Two-class Population Balance Equation Yielding Bimodal Flocculation of Marine or Estuarine Sediments[J]. Water Research, 2011, 45(5): 2131-2145.
[79]VOLD M J. Computer Simulation of Floc Formation in A Colloid Suspension [J]. Journal of Colloid Interface Science, 1963, 18(7): 684-695.
[80]SUTHERLAND D N. A Theoretical Model of Floc Structure [J]. Journal of Colloid and Interface Science, 1967, 25(3): 373-380.
[81]GOODARZ N I. Floc Simulation: Prolate Spheroidal Particle [J]. Journal of Colloid and Interface Science, 1970, 70(2): 306-319.
[82]WITTEN T A, SANDER L M. Diffusion-limited Aggregation: A Kinetic Critical Phenomenon [J]. Physical Review Letters, 1981, 47(19): 1400-1403.
[83]MEAKIN P. Formation of Fractal Clusters and Networks by Irreversible Diffusion-limited Aggregation[J]. Physical Review Letters, 1983, 51(13): 1119-1122.
[84]KORB M, BOTET R, JULLIEN R. Scalling of Kinetically Growing Clusters[J]. Physical Review Letters, 1983, 51(13): 1123-1126.
[85]JULLIEN R, KOLB M. Hierarchical Model for Chemically Limited Cluster-cluster Aggregation[J]. Journal of Physics, 1984,17(12): L739-L643.
[86]TANG S,PREECE J M,MCFARLANE C M,et al.Fractal Morphology and Breakage of DLCA and RLCA Aggregates[J]. Journal of Colloid and Interface Science,2000,221(1):114-123.
[87]KIM A S,STOLZENBACH K D.Aggregate Formation and Collision Efficiency in Differential Settling[J]. Journal of Colloid and Interface Science, 2004, 271(1): 110-119.
[88]杨铁笙, 李富根, 梁朝皇. 黏性细颗粒泥沙静水絮凝沉降生长的计算机模拟[J]. 泥沙研究, 2005, (4): 14-20.
[89]MARSH P. Effect of Shear-induced Breakup and Restructuring on the Size and Structure of Aggregates[D].Sydney, Australia : University of New South Wales, 2005.
[90]柴朝晖, 杨国录, 王 茜, 等. 紊流对黏性细颗粒泥沙絮凝影响[J]. 水科学进展, 2012, 23(6): 808-814.
[91]柴朝晖, 杨国录, 陈 萌, 等. 均匀切变水流对黏性细颗粒泥沙絮凝影响研究[J]. 水利学报, 2012, 43(10): 1194-1201.
[92]张金凤,张庆河. 黏性泥沙不等速沉降絮凝的格子Boltzmann模拟[J]. 水利学报,2009, 40(4): 385-390.
[93]张金凤,张庆河,张光全. 水体紊动对黏性泥沙絮凝影响研究[J]. 水利学报,2013, 44(1): 67-72.
PDF(1865 KB)

Accesses

Citation

Detail

Sections
Recommended

/