Diffusion Range of Grout in Consideration of Dynamic Change and Correlation of Parameters

LEI Jin-sheng, LIU Fei, PENG Gang, WANG Qian-feng, XIA Lei

Journal of Changjiang River Scientific Research Institute ›› 2016, Vol. 33 ›› Issue (2) : 57-61.

PDF(1219 KB)
PDF(1219 KB)
Journal of Changjiang River Scientific Research Institute ›› 2016, Vol. 33 ›› Issue (2) : 57-61. DOI: 10.11988/ckyyb.20140719
ROCK-SOIL ENGINEERING

Diffusion Range of Grout in Consideration of Dynamic Change and Correlation of Parameters

  • LEI Jin-sheng, LIU Fei, PENG Gang, WANG Qian-feng, XIA Lei
Author information +
History +

Abstract

In grouting treatment and seepage prevention, diffusion of grouts plays an important role, involving solid skeleton’s stress-strain relation, seepage field distribution and grout concentration’s distribution gradient perpendicular to the diffusing direction. According to coupling of seepage field and stress field in porous media, we take into consideration the time-varying viscous characteristics of grouting parameters, and dynamic variation of physical parameters of grouting in porous media, namely density, porosity, and permeability. On the basis of this, we analyze the correlation and dynamic change of physical parameters and present a simulation method for grouting diffusion. In the simulation of homogeneous soil under fluid-solid coupling, we use finite element method to obtain spherical diffusion radius and cylindrical diffusion radius under the conditions of time-varying viscosity and unchanged viscosity. Compared with conventional theory of grouting diffusion, fluid-solid coupling simulation taking soil parameters and dynamic characteristics of slurry into account is very suitable for analyzing diffusion range of slurry in soil.

Key words

porous media / grouting / diffusion range / fluid-solid coupling / dynamic parameter

Cite this article

Download Citations
LEI Jin-sheng, LIU Fei, PENG Gang, WANG Qian-feng, XIA Lei. Diffusion Range of Grout in Consideration of Dynamic Change and Correlation of Parameters[J]. Journal of Changjiang River Scientific Research Institute. 2016, 33(2): 57-61 https://doi.org/10.11988/ckyyb.20140719

References

[1] 杨秀竹, 雷金山, 夏力农, 等. 幂律型浆液扩散半径研究[J]. 岩土力学,2005,26(11):1803-1806.
[2] 阮文军. 注浆扩散与浆液若干基本性能研究[J]. 岩土工程学报,2005,27(1):69-73.
[3] 阮文军. 基于浆液黏度时变性的岩体裂隙注浆扩散模型[J]. 岩石力学与工程学报, 2005, 24(15): 2709-2714.
[4] 杨秀竹, 王星华, 雷金山. 宾汉体浆液扩散半径的研究及应用[J]. 水利学报, 2004, 35(6): 75-79.
[5] 杨志全, 侯克鹏, 郭婷婷, 等. 黏度时变性宾汉体浆液的柱-半球形渗透注浆机制研究[J]. 岩土力学,2011,32(9):2697-2703.
[6] BIOT M A. General Theory of Three-dimensional Consolidation[J]. Journal of Applied Physics, 1941,12(2): 155-164.
[7] 孔祥言. 高等渗流力学[M]. 合肥:中国科学技术大学出版社,1999.
[8] 李培超, 孔祥言, 卢德唐. 饱和多孔介质流固耦合渗流的数学模型[J].水动力学研究与进展(A辑), 2003, 18(4): 419-426.
[9] 袁士义,冉启全,胡永乐,等. 考虑裂缝变形的低渗透双重介质油藏数值模拟研究[J]. 自然科学进展,2005,15(1):77-83.
[10]雷树业, 王利群, 贾兰庆, 等. 颗粒床孔隙率与渗透率的关系[J]. 清华大学学报(自然科学版),1998,38(5):76-79.
[11]黎水泉,徐秉业. 双重孔隙介质流固耦合理论模型[J]. 水动力学研究与进展(A辑), 2001, 16(4): 460-466.
[12]杨米加, 陈明雄, 贺永年. 注浆理论的研究现状及发展方向[J]. 岩石力学与工程学报, 2001, 20(6): 839-841.
[13]程鹏达. 孔隙地层中粘性时变注浆浆液流动特性研究[D]. 上海:上海大学,2011.
[14]李 璐, 程鹏达, 钟宝昌, 等. 黏性浆液在小孔隙多孔介质中扩散的流固耦合分析[J]. 水动力学研究与进展(A 辑), 2011, 26(2): 209-216.
[15]AHN S Y, AHN K C, KANG S G. A Study on the Grouting Design Method in Tunnel under Ground Water[J]. Tunnelling and Underground Space Technology, 2006, 21(3): 400.
[16]雷进生. 碎石土地基注浆加固力学行为研究[D]. 武汉:中国地质大学,2013.
[17]王立彬,燕 乔,毕明亮. 黏度渐变型浆液在砂砾石层中渗透扩散半径研究[J]. 中国农村水利水电,2010,(9): 68-70, 74.
[18]秦鹏飞,符 平,王 春,等. 砂砾石土灌浆浆液扩散半径试验研究[J]. 长江科学院院报, 2014, 31(5): 84-86, 101.
PDF(1219 KB)

Accesses

Citation

Detail

Sections
Recommended

/