为了使分布式水文模型计算单元更好地反映垫面特性, 基于地形带的分类, 运用ArcGIS软件的划分单元面积功能, 采用改进的适度指数法推求长江上游研究区流域的最佳阈值, 能够最终确定不同地形带流域河网密度与最佳阈值的关系。实例结果表明采用改进的适度指数法可以生成反映实际水系, 且与蓝网拟合程度高的模拟河网;根据不同地形带的河网密度与最佳阈值关系和已知蓝线河网密度, 可以快速得到流域的最佳阈值。
Abstract
The objective of this research is to better reflect the watershed land surface characteristics of computing units in distributed hydrological model. According to selected indexes, the terrain in the studied watershed was classified. On the basis of the classification and the division unit area function of ArcGIS, the optimal drainage area threshold of the studied area in the upstream of Yangtze River is obtained by using improved fitness index method, then the relationship between drainage area threshold and river network density could be determined. Results show that by using improved fitness index method, the simulated river network could reflect the actual river system and is reasonably close to the reality. According to the relationship, the optimal drainage area threshold could be obtained quickly given the blue line network density.
关键词
DEM /
地形带分类 /
改进的适度指数法 /
河网密度 /
最佳阈值
Key words
Digital Elevation Model(DEM) /
terrain classification /
improved fitness index method /
river network density /
optimal drainage area threshold
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 林三益. 水文预报[M]. 北京:中国水利水电出版社, 1986. (LIN San-yi. Hydrological Forecasting[M]. Beijing: China Water Power Press, 1986.(in Chinese))
[2] 熊立华, 郭生练. 基于DEM的数字河网生成方法的探讨[J].长江科学院院报, 2003, 20(4): 14-17. (XIONG Li-hua, GUO Sheng-lian. Method for Extracting Digital Channel Network from Digital Elevation Model of Watershed[J]. Journal of Yangtze River Scientific Research Institute, 2003, 20(4): 14-17. (in Chinese))
[3] QUINN P, BEVEN K J, CHEVALLIER P, et al. The Prediction of Hillslope Flow Paths for Distributed Hydrological Modeling using Digital Terrain Models[J]. Hydrological Processes, 1991, 5(1): 59-79.
[4] LIN W T, CHOU W C, LIN C Y, et al. Automated Suitable Drainage Network Extraction from Digital Elevation Models in Taiwan’s Upstream Watersheds[J]. Hydrological Process, 2006, 20(2): 289-306.
[5] 吴泰兵, 夏达忠, 张行南. 基于改进适度指数法的流域流水网阈值确定研究[J]. 水电能源科学, 2011, (4) :18-20. (WU Tai-bing, XIA Da-zhong, ZHANG Xing-nan. Identification of Critical Contributing Area Based on Improved Fitness Index Method[J]. Water Resources and Power, 2011, (4) :18-20.(in Chinese)).
[6] 孙爱立, 余钟波, 杨传国, 等. 我国水系提取阈值影响因素分析[J]. 水利学报, 2013, (8):901-907.(SUN Ai-li, YU Zhong-bo, YANG Chuan-guo, et al. Impact Factors of Contribution Area Threshold in Extracting Drainage Network for Rivers in China[J]. Journal of Hydraulic Engineering, 2013, (8): 901-907.(in Chinese))
[7] 刘会平. 长江流域地貌类型研究[J]. 华中师范大学学报(自然科学版), 1994, 28(1):129-132.(LIU Hui-ping. A Study on the Topography Classification in Changjiang Reaches[J]. Journal of Central China Normal University(Natural Science), 1994, 28(1):129-132.(in Chinese))
[8] 高玄彧. 地貌基本形态的主客分类法[J]. 山地学报, 2004, (3):261-266.(GAO Xuan-yu. The Subjective and Objective Classification of Geomorphologic Forms[J]. Journal of Mountain Science, 2004, (3):261-266.(in Chinese))
[9] 张 磊. 基于地形起伏度的地貌形态划分研究——以京津冀地区为例[D]. 石家庄:河北师范大学, 2008.(ZHANG Lei. A Study of the Geomorphologic Shape Classification Based on Relief Amplitude: A Case Study on Beijing-Tianjin-Hebei Region[D]. Shijiazhuang:Hebei Normal University, 2008.(in Chinese))
基金
国家自然科学基金重点项目(41030636);国家高新技术研究发展计划(863)项目(2012AA12A309 );高等学校博士学科点专项科研基金(20110094110011)